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Classical and quantum Chern-Simons with gauge group U(1)N were classi-

fied by Belov and Moore in [BM05]. They studied both ordinary topological

quantum field theories as well as spin theories. On the other hand a corre-

spondence is well known between non-spin (2 + 1)-dimensional TQFTs and

modular tensor categories. We study group categories and extend them slightly

to produce modular tensor categories that correspond to toral Chern-Simons.

Group categories have been widely studied in other contexts in the literature
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[FK93],[Qui99],[JS93],[ENO05],[DGNO07]. The main result is a proof that the

associated projective representation of the mapping class group is isomorphic

to the one from toral Chern-Simons. We also remark on an algebraic theorem

of Nikulin that is used in this paper.
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Chapter 1

Introduction

The study of topological quantum field theories emerged in the 1980’s in

[Wit88] where a supersymmetric quantum theory was introduced that is linked

to Floer homology and the Donaldson invariants. It was shown that this

quantum field theory is metric independent. A short time later groundbreak-

ing connections were made in [Wit89] between Chern-Simons field theory and

low-dimensional topology (knot theory and 3-manifold invariants).

Contemporarily, algebraists and representation theorists were construct-

ing quantum groups, and equally powerful connections were made between

quantum groups, knot theory, and 3-manifold invariants ([RT90],[RT91], [KM91]).

In Chern-Simons theory the basic data that characterizes a theory is a

compact Lie group G along with an element k ∈ H4(BG,Z) called the level.

Witten considered compact semisimple Lie groups (e.g. SU(2)) where k is an

integer. On the other hand the basic data that characterizes a quantum group

is a compact semisimple Lie group G along with a deformation parameter t.

It was noticed immediately that there is an agreement between Chern-

Simons theory and quantum groups when comparing the induced link invari-
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ants and 3-manifold invariants. For example, for G = SU(2) they agree if the

level and the deformation parameter are related by

t = exp

(
πi

2(k + 2)

)
(1.1)

In light of this (actually somewhat before) Atiyah proposed an axiomatic um-

brella formulation of TQFTs [Ati90a] that unifies both approaches into a com-

mon language.

Simultaneously a third line of development based on category theory

was emerging. The braided and ribbon categories described in [JS93],[Shu94],

combined with aspects formulated in [MS89],[RT90],[RT91], resulted in modu-

lar tensor categories (c.f. [Tur94]). In particular quantum groups are examples

of modular tensor categories, and many crucial aspects of conformal field the-

ory are also encoded in modular tensor categories. By the early 1990’s a clearer

picture had emerged:

Quantum Groups ⊂ MTCs⇐⇒ (2 + 1)-dim TQFTs ⊃ Chern-Simons (1.2)

The relationship between MTCs and TQFTs is discussed further below (in

particular - to the author’s knowledge - the direction MTC ⇐ TQFT is not

yet constructed for all cases).

Several examples of Chern-Simons theories that have been quantized are

listed in the left column of table (1.1) (more cases that have been quantized

include most simple groups G and direct products). In particular Chern-

Simons theories with gauge group U(1) were studied by Manoliu [Man98] using

a real polarization technique, and more recently Chern-Simons theories with
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gauge group U(1)N were classified by Belov and Moore [BM05] using Kähler

quantization. It was shown that the data that determines quantum toral

Chern-Simons is a trio (D, q, c) where D is a finite abelian group, q : D → Q/Z

is a quadratic form, and c is an integer mod 24 (subject to a constraint). It

is natural to ask what the corresponding modular tensor categories are. This

paper answers that question.

Table 1.1: Zoology
Classical Chern-Simons
G compact Lie group
k ∈ H4(BG,Z)

Modular Tensor Cate-
gory

Link Invariants in S3

(link has canonical
framing)

G = SU(2)
k ∈ Z

Quantum group
Ut(sl2(C))
t = exp( πi

2(k+2)
)

Jones polynomial

G = SU(N)
k ∈ Z

Quantum group
Ut(slN(C))
t = exp( πi

2(k+2)
)

HOMFLY polynomial

G = finite group
k =vacuous [FQ93]
[DW90]

Quantum double D(G) No uniform description

G = U(1) [Man98]
G = U(1)N [BM05]
k =even lattice

this paper Deloup invariants
[Del99]

We note that Belov and Moore [BM05] classified more general spin 1

toral Chern-Simons theories as well. Unfortunately there is no well-developed

notion of spin modular tensor category, however the work done here makes an

excellent toy model that we can use to decide what the “right” definition for

spin MTC should be. We plan to expand these ideas in a forthcoming paper.

1The ordinary theories below are constructed on manifolds with extra structure: 2-
framings [Ati90b]. Spin theories are really theories of framed manifolds. See the recent
work by Hopkins-Lurie on the Baez-Dolan hypothesis.
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Physicists will be mainly interested in the applications to the fractional

quantum Hall effect (FQHE). The abelian states at filling fraction ν = 1
3

remain the only rigorously-established experimental states to coincide with

Chern-Simons, hence the abelian case remains relevant despite being useless

for topological quantum computation.

Before we proceed let us mention the very closely related work of Deloup

[Del99, Del01, Del03]. Deloup begins with the data of a finite abelian group D

and a quadratic form q : D → Q/Z. Because of the abelian nature of the data

it is possible to construct invariants of links and (eventually) a (2 + 1)-dim

TQFT “by hand” appealing to reciprocity alone.

This bypasses modular tensor categories entirely. However, the price is

that no braiding is described (the braiding is rather more subtle than what

one might first expect). We emphasize this difference since the modular tensor

categories described here allow us to construct an extended (2 + 1)-dim TQFT

(see chapter (2)). In particular we can describe quasiparticles completely,

whereas Deloup’s theories cannot. We also emphasize that Deloup did not

connect his work to Chern-Simons. It is the main result in this paper that the

TQFTs constructed here are the same as those from toral Chern-Simons.

Finally, some simple examples of ribbon categories are considered in the

appendix in [Del99]. These examples are briefly considered here in chapter 4,

and we argue that these do not correspond to toral Chern-Simons since many

of them are not modular tensor categories.

The organization of this paper is as follows: in chapter (2) we give

a brief overview of TQFTs starting with the motivating example of Chern-

Simons. In chapter (3) we review toral Chern-Simons as was classified by

Belov-Moore. In chapter (4) we provide the relevant definitions for ribbon
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categories and modular tensor categories, and we construct (2+1)-dim TQFTs

from them. This chapter differs from [Tur94] and [BK00] in that we emphasize

non-strict categories. In chapter (5) we study group categories and build

modular tensor categories out of them. The main result is proven in chapter (6)

- the projective actions of the mapping class group induced from toral Chern-

Simons and separately from group categories are isomorphic.
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Chapter 2

(2 + 1)-dim Topological Quantum

Field Theories

2.1 Introduction

In this chapter we give a quick account of (2 + 1)-dim topological quantum

field theories (TQFTs). A (2 + 1)-dim Chern-Simons TQFT is essentially

determined by the (1 + 1)-dim conformal field theory (CFT) on the bound-

ary (the Knizhnik-Zamolodchikov equations determine the braidings and the

twists that appear in the theory). The language of modular tensor categories

(MTCs) is rather different, but underneath the details MTCs axiomatically

encode the relevant structures that appear in CFTs. Hence it is no surprise

that the Chern-Simons TQFTs form a subset of the TQFTs constructed from

modular tensor categories (it is in debate whether the opposite inclusion is

true [HRW07]).

The axiomatic approach toward the end of the chapter is taken from
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chapter 3 in Turaev’s book [Tur94] as well as the book of Bakalov and Kirillov

[BK00]. The original axioms were formulated by Atiyah [Ati90a] long ago.

Witten’s work relies on the earlier work of Segal [Seg04] and Moore

and Seiberg [MS89] in conformal field theory. Briefly, the conformal field

theory that appears on the boundary is the Wess-Zumino-Witten (WZW)

model (actually the chiral/holomorphic part). For a geometric perspective on

CFTs and Chern-Simons we recommend [Koh02].

Although Atiyah’s axioms apply in any dimension, we wish to restrict

ourselves to (2+1)-dimensions. In this case all of the known examples are con-

siderably richer than Atiyah’s axioms might suggest. Framed links (ribbons)

appear that physically are meant to encode the worldlines of exotic anyonic

quasiparticles [Wil90] undergoing creation, annihilation, twisting, and braid-

ing. 1 Mathematically more general colored ribbon graphs are studied, and

surgery provides a route from the ribbon graph construction to Atiyah’s ax-

ioms. 2

2.2 Chern-Simons

In [Wit89] Witten studied the Chern-Simons quantum field theory defined by

the action

exp(2πikSCS) = exp
(

2πik
∫
X3

Tr(A ∧ dA+
2

3
A ∧ A ∧ A)

)
(2.1)

We will discuss such actions more coherently in chapter (3), but for now X3

is a compact oriented 3-manifold equipped with a vector bundle E → X with

1the ribbons must be “colored” with the particle species.
2we note that all manifolds must be oriented throughout this paper.
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structure group G. For now G is a connected and simply-connected compact

Lie group (e.g. SU(2)). Chern-Simons is defined to be a gauge theory where

the gauge group is G = Map(X3, G), i.e. configurations of A that are related by

gauge transformations are physically indistinguishable and must be identified.

The action as written is not always well-defined since A is not always

well-defined. However, obstruction theory tells us that E is trivializable for a

connected simply-connected compact Lie group G (this is not true in general,

nor even in the remainder of this paper). Once we choose a trivialization 3

then this determines a standard flat covariant derivative D0 (the trivialization

determines parallel transport). Then given any other covariant derivative D

we can define the vector potential A via D = D0 + A. 4

It is well known (see e.g. [Fre95]) that the integral in equation (2.1) is

not gauge invariant. However under gauge transformations (if X3 is closed)

the integral changes by integer values M only:

∫
X3

Tr(A ∧ dA+
2

3
A ∧ A ∧ A)→

∫
X3

Tr(A ∧ dA+
2

3
A ∧ A ∧ A) +M (2.2)

Hence exp(2πikSCS) is invariant as long as the level k is any arbitrary integer.

More generally if X3 has boundary Σ2 then under gauge transformations

the integral instead picks up a chiral Wess-Zumino-Witten term:

∫
X3

Tr(A∧dA+
2

3
A∧A∧A)→

∫
X3

Tr(A∧dA+
2

3
A∧A∧A) +ScWZW (2.3)

3This choice of trivialization is unimportant. Any two trivializations are related by a
gauge transformation, but we shall physically identify any two connections that are gauge
equivalent. Hence we only require that the bundle be trivializable.

4E has structure group G, and D must respect this (e.g. parallel transport takes or-
thonormal frames to orthonormal frames for G = SO(3)). Thus, A is valued in the Lie
algebra g.
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It is a fact that ScWZW depends only on the configuration on the boundary

Σ2. Clearly the action is not gauge invariant if interpreted in the usual sense.

However the WZW term satisfies crucial cocycle conditions, and a more formal

construction yields a gauge invariant theory (see pgs. 16-21 in [Fre95]).

It is instructive to consider briefly a physical system that Chern-Simons

is thought to describe. In the fractional quantum Hall effect (FQHE) a 2-

dimensional gas of electrons (trapped between semiconductor layers) is cooled

to a few milliKelvin and placed under a magnetic field pointing in the z direc-

tion (if the 2-d gas lies in the xy-plane). Schematically the action is

S := Scyclotron + Se-e interaction (2.4)

where the cyclotron term describes the electrons orbiting in circular paths due

to the magnetic field, and the interaction term describes Coulomb repulsion

between electrons. The magnetic field breaks the parity reversal symmetry

of the system - hence the system is chiral. Consider the 2-d electron gas

propagating in time. Then this is a (2 + 1)-dimensional classical field theory.

Ignoring the e-e interaction term momentarily the quantum description

is given in terms of (degenerate) Landau levels where the energy of the Nth

level goes as EN ∼
√
N . Hence the system is gapped, and sufficiently lowering

the temperature restricts the system to the degenerate ground state N = 0.

The ground Landau level obtains interesting structure when e-e inter-

actions are again considered. It is shown in [HLR93] that the action (through

a change of variables) can be written as the effective action

S := Scyclotron + Se-e interaction
N=0−→ SCS + Squasiparticles (2.5)
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where SCS is the Chern-Simons action introduced in equation (2.1), and Squasiparticles

is a term encoding the dynamics of exotic anyonic quasiparticles [Wil90]. The

quasiparticles can be viewed as quantum excitations of cooperating electrons

and magnetic flux quanta [Kha05]. However, we always treat them semiclas-

sically in the sense that their trajectories are treated as classical paths. 5

The quasiparticles are coupled to A, hence they can be viewed as

detectors that measure the properties of A. We can imagine quasiparti-

cle/antiquasiparticle pairs being created, possibly braiding around each other,

and annihilating. Then their worldlines form links in (2 + 1)-dimensions. Fur-

thermore each quasiparticle species has a (2 + 1)-dimensional analogue of spin

- the twist - which is a phase factor that a quasiparticle picks up when it is

spun one full counterclockwise turn (viewing the xy-plane from above). Hence

the worldlines should be thought of as framed links, or ribbons, to encode the

twists.

As a first attempt to understand the role of the quasiparticles let us

alter the classical setup slightly. Instead of a Hamiltonian scenario where the

2-d electron gas propagates forward in time (i.e. a 3-manifold of the form

Σ × I), suppose we have a closed compact oriented 3-manifold X3 with a

fixed vector potential A. Although we are in a classical setting we put in

by hand quasiparticles (which are quantum-mechanical). However, as already

mentioned we only allow classical trajectories, and we treat them only as

detectors to measure aspects of A. We also ignore the possible twisting of the

quasiparticles (this will be remedied later).

Then the creation and annihilation of a quasiparticle/antiquasiparticle

5Note that the Chern-Simons vector potential A is usually not the vector potential
associated to the magnetic field.
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pair forms a simple closed curve γ in X3. The quasiparticle is labeled by a

representation R of G, and the antiquasiparticle is labeled by the dual repre-

sentation R∗ (the appearance of representations is consistent since the quasi-

particles are quantum mechanical objects put in by hand). The measured

observable is defined to be the Wilson loop

WR(γ,A) := TrRHolγ(A) (2.6)

the trace of the holonomy of A around γ in the representation R.

Now we wish to treat A quantum mechanically (leaving the quasipar-

ticles in their semiclassical detector roles). It is clearer if we use the path

integral perspective. Then the quantum observable associated to a simple

closed curve γ colored with the species R is a weighted average of WR(γ,A)

over all configurations of A:

< WR(γ,A) >:=
∫

A
DA exp(2πikSCS)WR(γ,A) (2.7)

It is easy to generalize this to multiple link components with different colorings

Ri. In the absence of link components we obtain a 3-manifold invariant of X3:

Z(X3) :=
∫

A
DA exp(2πikSCS) (2.8)

Unfortunately the path integral quantization procedure is not typically

calculable, is not rigorously defined, and the quasiparticles have rather lim-

ited properties in this formulation (i.e. no twisting and no fusing into com-

posite quasiparticles). Furthermore we have restricted ourselves to closed 3-

manifolds. The ultimate remedy is a Hamiltonian quantization procedure

11



involving Kähler quantization (no quasiparticles) and conformal field theory

(includes quasiparticles) which we briefly discuss now.

Phase space

Now let us briefly recall some aspects of the phase space described in [Wit89].

It is simplest to first consider a theory on Σ× I where Σ is a closed oriented

2-surface without marked arcs. 6 As usual the canonical formalism begins by

describing the space of configurations on the initial time surface Σ× {0}. For

Chern-Simons the initial configuration is a smooth Lie algebra-valued vector

potential A2 (a field configuration) on Σ× {0}. 7

Given an arbitrary field configuration A2 on the initial time slice Σ×{0}

(subject to the appropriate constraints) we can use the equations of motion to

propagate it forward in time (producing a vector potential configuration A on

the whole 3-manifold). 8 In this way the different “configuration spaces” at

different time slices Σ× {t1} and Σ× {t2} can be identified and we need only

think of the configuration space. On the other hand the resulting connection

A on the entire 3-manifold Σ× I (by construction) is a solution to the Euler-

Lagrange equations, hence alternatively we can view the “configuration space”

as the space of solutions to the Euler-Lagrange equations on the 3-manifold.

6Arcs become ribbons when propagated in time - these are the worldlines of quasiparti-
cles. The marking (coloring) is the particle species.

7We note that a given A2 configuration on the initial time surface cannot be completely
arbitrary because for some vector potentials we would have no hope of solving forward to
produce a solution of the Euler-Lagrange equations on the whole 3-manifold. Hence we can
only consider vector potentials on the 2-surface that are subject to the Gauss law constraint.

8Usually it is necessary to specify the initial field configuration and time derivative(s)
in order to solve forward using the equations of motion (since typically Euler-Lagrange
equations are second-order differential equations). However (as we shall see) the Euler-
Lagrange equations are first-order for Chern-Simons, hence the time derivatives are not
necessary.

12



For Chern-Simons the Euler-Lagrange equation

F = 0 (2.9)

says that classically the allowed connections on the 3-manifold Σ× I must be

flat. Hence naively the configuration space should be the space A F=0 of flat

vector potentials A on Σ× I.

However Chern-Simons has in addition the assumed mathematical re-

dundancy that defines it as a gauge theory, so instead the configuration space

is the space of flat vector potentials on Σ× I modulo gauge transformations,

the moduli space of flat connections

M := A F=0/ ∼ (2.10)

Alternatively, we can work over the initial time slice Σ×{0} and consider

the space A2 of vector potentials over the 2-manifold that satisfy the Gauss

law constraint. For Chern-Simons the Gauss constraint is easy - the curvature

of an allowed configuration A2 over Σ × {0} must vanish, i.e. F2 = 0. When

restricting a vector potential A on the 3-manifold to the initial time slice

Σ × {0} we must use up part of the gauge freedom in order to kill the time

component of the 1-form A. This is temporal gauge.

Even in temporal gauge there is still gauge freedom left. Modding out

by this residual gauge freedom we obtain the configuration space, again called

the moduli space of flat connections

M := A F2=0
2 / ∼2 (2.11)
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We will freely switch back and forth between the two definitions of configura-

tion space.

Example 2.12. M was studied in [AB83] and [Jef05], however there it arises

from Yang-Mills theory on a 2-dimensional oriented surface Σ with Riemannian

metric. 9

Since it will be useful later let us remind ourselves of some elementary

facts about Riemann surfaces (see e.g. [Sch89]). For an oriented 2-surface

Σ the metric induces a unique complex structure. 10 Conversely, the uni-

formization theorem says that a complex structure on a 2-surface Σ induces

an orientation and a class of metrics that are all equivalent up to local confor-

mal transformations (angles are preserved, but not necessarily lengths). One

of those has normalized constant scalar curvature. 11

Hence for an orientable 2-surface we have a one-to-one correspondence

complex structures↔ conformal classes of metrics and orientations (2.13)

Since in Yang-Mills Σ is endowed with a Riemannian metric we might as well

give Σ the induced complex structure.

Let E2 → Σ be a vector bundle with structure group G on which Yang-

9Σ must have a metric because the Hodge star (∗) operator is used in the Yang-Mills
action.

10One can define an almost complex structure J via the following map: for a tangent
vector ξ, J(ξ) is the unique vector that is

1. the same length as ξ,

2. orthogonal to ξ,

3. the pair (ξ, J(ξ)) has positive orientation.

Any “almost” complex structure on a surface is integrable, so this is actually a complex
structure.

11normalized to −1, 0, or 1
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Mills lives. It is straightforward to show that if the vector bundle E2 is trivial

then the 2-dimensional Yang-Mills equations of motion are

F2 = 0 (2.14)

Modding out by gauge transformations we recover the moduli space of flat

connections M .

However a flat G-connection corresponds to a homomorphism

π1(Σ)→ G (2.15)

since a connection can be encoded as monodromies along paths (E2 is a trivial

bundle so that the monodromy along a non-closed path makes sense). Two

paths that start at a point x1 and end at a point x2 form a loop, and the

difference in monodromies is just the holonomy around the loop. However,

the holonomy of a flat connection around a contractible loop is always the

identity. Using this it is easy to show that a homotopy of a non-closed path

(leaving the endpoints fixed) leaves the monodromy invariant. Hence the space

of flat G-connections (even before modding out by gauge transformations) is

determined by the holonomies around generators of π1(Σ).

As a very easy example consider Σ = S2. Then π1(S2) = 0 hence there

is only the trivial homormorphism π1(Σ)→ G. Thus there is only a single flat

connection, so M is just a point. In particular we see that M is compact and

even-dimensional; these are features that persist for general Σ. 12

12Here we can see that the assumed triviality of the vector bundle E2 is essential. If not
then we could consider the example Σ = S2 and take as the vector bundle the tangent bundle
TS2. Give S2 a metric (say a metric of constant curvature 1 by thinking of S2 as standardly
embedded in R3). Then the tangent bundle is an SO(2)-bundle. Since π1(S2) = 0 we might

15



In other theories the Euler-Lagrange equations are typically second or-

der differential equations. In the canonical formalism it is customary to for-

mally pass to a first-order theory at the cost of adding extra momentum vari-

ables. At the initial time slice Σ×{0} the phase space is the space of allowed

positions and momenta, and we propagate this phase space forward to any

other time slice using Hamilton’s equations.

In Chern-Simons, however, the Euler-Lagrange equations are already

first-order differential equations. Thus it is inappropriate to introduce auxil-

iary canonical momenta (any attempt to do so will yield a constrained mechan-

ical system where the momenta Π can be written in terms of the configuration

variables A). Hence the moduli space of flat connections M (in addition to

being the configuration space) also plays the role of phase space equipped with

a symplectic structure and a Hamiltonian.

Let us remark briefly about the origin of the symplectic structure on M .

We refer the reader to [Jef05] for more details. First, in order to be a symplectic

manifold we need that M is even dimensional. Given the identification above

of a flat connection with a homomorphism

π1(Σ)→ G (2.16)

the dimension of M is 2g · dim G where g is the genus of Σ, hence manifestly

the dimension is even.

Second, consider the space of all G-connections A = Ω1(Σ, g) over the

conclude by the argument above that the tangent bundle admits a unique flat connection.
However, the Gauss-Bonnet theorem implies that no flat connection exists on TS2 since the
Euler characterstic is χ(S2) = 2 whereas the integral of a flat connection is just 0. The
resolution is that TS2 is not trivial.
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2-manifold Σ. Since A is an affine space (actually here it is a vector space

because there is a distinguished A = 0 corresponding to the chosen standard

flat connection D0), each tangent space TAA can be identified with A itself.

Hence a symplectic form on the manifold A is determined by a symplectic

form on the vector space A . A natural symplectic form is given by (up to

normalization)

ω(A1, A2) =
∫

Σ
Tr A1 ∧ A2 (2.17)

We leave it to the references for proof that these statements descend to M .

Prequantization

We turn our attention towards quantization of the compact symplectic phase

space M . However, we should expect difficulties since in other theories typi-

cally phase space is non-compact.

Since M also plays the role of configuration space we might try to make

sense of L2(M ,C). 13 Indeed if dim(M ) = 2n then we have the usual Liouville

volume form

vol = (−1)n(n−1)/2 1

n!
ω ∧ ω ∧ . . . ∧ ω (2.18)

where the wedge product is over n copies of the symplectic form ω.

Hence we know how to integrate functions on M , so L2(M ,C) is well-

defined. Intuitively the number of quantum basis wavefunctions should be

proportional to the volume (a quantum basis state corresponds to a box of

side ~ in phase space). Since M is compact the total volume of M is finite,

hence we expect finitely-many quantum basis wavefunctions. Unfortunately,

13We feel that this would be an interesting problem to compare in this context using spin
networks. See for example [Bae96] and [Bae99].
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even though M is compact, L2(M ,C) is infinite dimensional. 14 Therefore we

assert that L2(M ,C) is too large to describe the quantum states.

The technique of geometric quantization [Woo80] provides a more rigor-

ous quantization that agrees with our intuition. We briefly describe the main

ideas.

Instead of L2(M ,C) we can consider L2 sections of a hermitian line

bundle L (a U(1) bundle equipped with a U(1) covariant derivative ∇) over

M . Denote the space of these L2 sections L2(L ). We refer the reader to

pgs 16-18 of [Fre95] for the construction of L from the Wess-Zumino-Witten

model.

L2(L ) is the prequantum Hilbert space. Unfortunately (exactly as is

the case for L2(M ,C)) L2(L ) is infinite dimensional. In order to shrink to

a finite-dimensional physical Hilbert space it is instructive to recall that M

also plays the role of phase space. In this light L2(L ) is too large since it is

analogous to “L2(p, q)”, i.e. L2 functions on both the position and momentum

variables.

Kähler quantization

Choosing a polarization is the process of picking a foliation of M by leaves

that are precisely half the dimension of M . At a point x ∈M the leaf P that

passes through x determines locally a “momentum” submanifold of M . The

physical Hilbert space is defined to be the subspace of L2(L ) of sections that

are constant in the momentum direction.

More precisely at x ∈ P ⊂M the tangent space TPx ⊂ TMx must be a

14For example Fourier series provides a countably-infinite basis for functions on the com-
pact manifold S1.
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Lagrangian subspace (maximal isotropic) with respect to the symplectic form

ω, i.e. TPx is an n-dimensional subspace (M is 2n dimensional) such that if

A1, A2 ∈ TPx then ω(A1, A2) = 0. The physical Hilbert space is comprised

of sections s such that ∇As = 0 for every A ∈ Γ(TP ). There are several

methods for choosing a polarization, however each requires that we impose

extra structure on M .

We now describe a similar method for reducing the phase space. The

idea is to equip M with a complex structure J and restrict to holomorphic

sections. For technical reasons it is useful if M can be made Kähler. We

already have a symplectic form (possibly not normalized properly)

ω(A1, A2) =
∫

Σ
Tr A1 ∧ A2 (2.19)

and a choice of complex structure J . Then M is Kähler if we define the

Riemannian metric g(A1, A2) to be

g(A1, A2) = ω(A1, J · A2) (2.20)

Now shrink the prequantum Hilbert space using standard complex anal-

ysis: an almost complex structure is a (fiberwise) linear map J : TM → TM

that satisfies J2 = −1. TM is a real vector bundle, but over the reals J

has no eigenvalues. However, if we complexify TM (which doubles the real

dimension) then TMC splits into ±i eigenspaces of J , i.e.

TMC = TM (1,0) ⊕ TM (0,1) (2.21)

(we should also complexify the symplectic form ωC and the covariant derivative
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∇C in the line bundle L ). Then the holomorphic sections of L are sections

s such that ∇CAs = 0 for every A ∈ Γ(TM (0,1)). Define the physical Hilbert

space H to be the space of holomorphic sections of L .

Extra assumption: complex structure on Σ

The only issue left to resolve is the choice of complex structure J on M .

However, recall that M is the moduli space of flat connections on Σ.

Let us equip Σ with a Riemannian metric. Then there is an induced

natural complex structure J on the manifold A = Ω1(Σ, g) that can be seen

as follows. Since A is an affine space (actually a vector space because of

the distinguished A = 0 due to a choice of standard flat connection D0) the

tangent space TAA at a point A ∈ A can be identified with the vector space

A itself. Hence a complex structure on the manifold A is determined by a

linear operator J acting on the vector space A such that J2 = −1. Such a

map is given by

J(A) = ∗A (2.22)

where ∗ is the Hodge dual. Because Σ is 2-dimensional it is trivial to verify

that J2 = (∗)2 = −1 on 1-forms - so this defines a complex structure on A

(which descends to a complex structure on the moduli space M ).

The symplectic form is

ω(A1, A2) =
∫

Σ
Tr A1 ∧ A2 (2.23)
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and the complex structure 15 is defined by

J(A) := ∗A (2.24)

Hence a Kähler structure on A is achieved by using the Riemannian metric

g(A1, A2) = ω(A1, J · A2) =
∫

Σ
Tr A1 ∧ ∗A2 (2.25)

Passing to moduli space we obtain a Kähler structure on M .

Example 2.26. We note that the full strength of a Riemannian metric on Σ

is not required to produce the complex structure J on M .

Recall from example (2.12) that a given orientation and Riemannian

metric on a 2-surface Σ induces a complex structure j on Σ (see below in local

coordinates). However, let us forget the Riemannian metric on Σ and start

with a complex structure j on Σ. Then j induces a complex structure J ′ on

the affine manifold A = Ω1(Σ, g) (since each tangent space TAA is identified

with the vector space A itself). Passing to the moduli space we obtain a

complex structure J ′ on M .

In local coordinates it is straightforward to see that J ′ is actually the

opposite complex structure to the J defined using a Riemannian metric on Σ

and the Hodge star operator (see [GH78] for the relevant complex geometry).

For example consider the 2-dimensional plane R2 equipped with the

standard inner product and standard orientation. Let us ignore the fact that

15Again we ignore integrability of this almost complex structure.
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the forms in A are g-valued. Take the oriented orthonormal basis

(
∂

∂x
,
∂

∂y

)
(2.27)

The volume form for this orientation and metric is just dx ∧ dy, hence the

Hodge dual gives us

J(dx) := ∗dx = dy and J(dy) = ∗dy = −dx (2.28)

On the other hand the standard inner product on R2 induces a complex

structure map (a counterclockwise quarter turn)

j

(
∂

∂x

)
=

∂

∂y
and j

(
∂

∂y

)
= − ∂

∂x
(2.29)

The dual of j defines a linear operator J ′ on the space of 1-forms A ∈ A

(J ′(A))

(
a
∂

∂x
+ b

∂

∂y

)
:= A

(
j

(
a
∂

∂x
+ b

∂

∂y

))
(2.30)

where a and b are real coefficients. Using the above action of j a quick calcu-

lation shows

J ′(dx) = −dy and J ′(dy) = dx (2.31)

which is clearly the opposite of J .

Hence if we complexify R2 then the holomorphic differential dzJ ′ asso-

ciated to J ′ is equal to the antiholomorphic differential dz̄J associated to J .

Let us complexify explicitly and produce the formulas for J ′ (then the reader
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can check that the corresponding formulas for J are the conjugates). We have

R2 = R

{
∂

∂x
,
∂

∂y

}
(2.32)

Allowing complex coefficients gives

C2 = C

{
∂

∂x
,
∂

∂y

}
(2.33)

Define

∂

∂z
:=

1

2

(
∂

∂x
− i ∂

∂y

)
(2.34)

∂

∂z̄
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
(2.35)

Then it is easy to check (using the above formulas for J ′) that

J ′
(
∂

∂z

)
= i

∂

∂z
(2.36)

J ′
(
∂

∂z̄

)
= −i ∂

∂z̄
(2.37)

(2.38)

So the holomorphic tangent space (relative to J ′) is just

(TC2)(1,0) := C

{
∂

∂z

}
(2.39)

and the antiholomorphic tangent space (relative to J ′) is just

(TC2)(0,1) := C

{
∂

∂z̄

}
(2.40)
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The same calculations end up conjugated when we use the complex structure

J instead.

In view of this example we do not need a Riemannian structure on Σ

in order to Kähler quantize, but merely a complex structure j. In the next

section (using instead the conformal field theory approach) we dispense even

with the complex structure.

2.3 Conformal field theory

In the last section we outlined Kähler quantization and described how to con-

struct a finite-dimensional quantum Hilbert space H associated to the initial

time slice Σ×{0}. In the Hamiltonian formalism (on the manifold Σ× I) H

is evolved forward using the Hamiltonian H. However it is easy to verify that

for Chern-Simons H = 0. There are no dynamics on Σ × I where (Σ, j) is a

closed Riemann surface, hence we conclude that Kähler quantization is rather

mundane. Furthermore the chiral WZW action appears on the boundary in

Chern-Simons, but this was not used in Kähler quantization. Motivated by

this we turn to the richer structure provided by conformal field theory (which

agrees with Kähler quantization on closed Riemann surfaces Σ [BL94]).

A detailed analysis of the Wess-Zumino-Witten model is provided in

(for example) [Koh02]. 16 However here we restrict ourselves to the axiomatic

16The strategy for the WZW model is to first avoid closed surfaces and instead study
the WZW action on Riemann surfaces (Σ, j) with at least one boundary circle. The WZW
action is not a priori well-defined on Riemann surfaces with boundary, however a study of
the unit disk (Σ, j) = D yields a construction based on a central extension of the loop group.
Gluing laws can then be defined. In particular this defines the theory on closed Riemann
surfaces since any such surface can be decomposed into two surfaces glued along nonemtpy
boundary.
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framework described in [Seg04]. The most primitive notion introduced by

Segal is a modular functor. 17 We mention that in the following we con-

sider Riemann surfaces with labeled (colored) boundary circles. A boundary

circle should be interpreted as the boundary of an excised disk containing a

quasiparticle, and the color specifies the particle species. In addition we re-

quire that the boundary circles be parameterized. To make contact with our

previous characterization of quasiparticles (and remain consistent with other

treatments (see chapter 5 in [Tur94] and chapter 5 in [BK00]) it is not nec-

essary to parameterize boundary circles, but rather merely select a basepoint

on each boundary circle. 18 A third alternative is to shrink each circle to a

marked point with distinguished tangent vector on a closed surface Σ. These

are marked arcs. However in CFT the boundary circles play a richer role

- on the one hand they are quasiparticles, but on the other hand Riemann

surfaces can be glued together along parameterized boundary circles (which

cannot be done with marked arcs).

Definition 2.41. Let φ be a finite set of labels (particle species). Define a

category Gφ as follows:

1. An object is a compact Riemann surface (Σ, j) of arbitrary topological

type, and possibly with many connected components and parameterized

17A modular functor is part of the underlying structure of a chiral conformal field theory
(a weak conformal field theory in the language of [Seg04]). Given two opposite-chirality
weak conformal field theories based on the same unitary modular functor it is possible to
combine them to form an honest conformal field theory. Since it is a chiral theory that
appears in Chern-Simons we restrict our attention to the modular functor.

18It is clear that a circle S1 parameterized by a diffeomorphism S1 → U(1) has a distin-
guished basepoint (e.g. the preimage of {1} for example). However the space Diff+

pt(S
1) of

all (orientation preserving) diffeomorphisms that share the same basepoint is contractible.
Below we shall only be concerned with π1 of the various spaces that appear, hence only the
parameterization up to homotopy is important.
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boundary circles. The boundary circles are labeled (colored) with ele-

ments from φ. If the orientation induced by the parameterization agrees

with the boundary orientation then the circle is outgoing. If they disagree

then the circle is incoming.

2. A morphism (Σ, j) → (Σ, j) takes a Riemann surface (Σ, j) with an

outgoing and an incoming boundary circle labeled by the same color

i ∈ φ and glues them along the parameterizations to form a new Riemann

surface (Σ, j) with two fewer boundary circles.

Definition 2.42. A Segal modular functor is a functor 19

F : Gφ → finite dimensional complex vector spaces (2.43)

that assigns to a Riemann surface (Σ, j) with colored parameterized boundary

a complex vector space F ((Σ, j)) (not a Hilbert space in general). This functor

must satisfy

1. F is a holomorphic functor (see below)

2. F ((Σ, j)
∐

(Σ′, j′)) = F ((Σ, j))⊗F ((Σ′, j′))

3. For the Riemann sphere dim(F (S2)) = 1

19We note that a Segal modular functor is stronger than the modular functor defined
later in this treatment. A Segal modular functor is defined in terms of Riemann surfaces,
boundary circles can be glued, and is valid in 2 dimensions only.

However, the dependence on the complex structure of a Riemann surface Σ can be relaxed.
Presumably then a Segal modular functor is equivalent to an extended 2-d modular functor
as discussed in chapter 5 of [Tur94] and chapter 5 of [BK00]. Because of the gluing property
an extended 2-d modular functor is stronger than a modular functor defined below (and in
chapter 3 of [Tur94]).
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4. Consider cutting a Riemann surface (Σ, j) along a parameterized simple

closed curve to produce a new surface with two more boundary circles

(one incoming and one outgoing). Let us color both circles with a color

i from the finite set of colors φ. Denote this new Riemann surface by

(Σi, j). We could think about sewing this back together, which by def-

inition is just a morphism fi : (Σi, j) → (Σ, j) (a gluing). The functor

then gives a linear map F (fi) : F ((Σi, j))→ F ((Σ, j)). Summing over

all colors we require that the map

⊕
i∈φ

F ((Σi, j))→ F ((Σ, j)) (2.44)

be a natural isomorphism.

In order to define holomorphic functor we mention some more standard

results from complex geometry. Consider the space J (Σ) of all complex

structures on Σ (Σ is a smooth manifold possibly with colored parameterized

boundary). In other words J (Σ) is the space of all Riemann surfaces that

are topologically diffeomorphic to Σ. J (Σ) is a contractible topological space

(consider the space of smoothly-varying matrices j(x) for x ∈ Σ such that

j2 = −1. This space is contractible in 2 dimensions).

Two Riemann surfaces (Σ, j1) and (Σ, j2) of the same topological type

are equivalent if there is an orientation-preserving diffeomorphism φ : Σ→ Σ

that maps j1 to j2 (i.e. a biholomorphic map). If Σ has boundary then

we assume that φ maps circles to circles respecting the parameterizations.

The resulting space J (Σ)/ ∼ is the moduli space CΣ (see [Sch89] - except

note that in contrast to other treatments here any boundary components are

parameterized).
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A functor F is holomorphic if the complex vector spaces F ((Σ, j))

assigned to Riemann surfaces (Σ, j) of a given topological type Σ smoothly

vary as the complex structure j varies. More precisely, F is holomorphic if

we obtain a holomorphic vector bundle F (CΣ)→ CΣ.

Consider the following (proposition 5.4 in [Seg04]): 20

Proposition 2.45 (Segal). Associated to any arbitrary modular functor F is

a canonical flat connection on the projective bundle PF (CΣ)→ CΣ

This implies that we can identify the projective vector spaces PF ((Σ, j1))

and PF ((Σ, j2)) once a path has been specified in CΣ from (Σ, j1) to (Σ, j2).

Since the connection is flat only the homotopy type of the path is relevant.

Choose a complex structure (Σ, j) and associate to Σ the vector space

H := F ((Σ, j)) (2.46)

From the comments above H is a projective representation of π1(CΣ), and

the choice of j is equivalent to the choice of basepoint for π1(CΣ). Let us now

study π1(CΣ).

Example 2.47. It is a standard result that when Σ is a closed oriented surface

then CΣ is a finite-dimensional complex variety but perhaps with singularities.

For the Riemann sphere the moduli space CS2 is a point (there is a

unique Riemann sphere C∪{∞} up to automorphisms of the complex structure

via the action of PSL(2,C)).

A closed genus 1 surface is obtained from the complex plane C in the

usual way by identifying points related by translations using a rank 2 lattice

20Unfortunately Segal avoids proving this for closed oriented surfaces Σ since then the
moduli space CΣ may have singularities. We ignore this source of complication.
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Z ⊕ Z. Explicitly we identify z 7→ z + 1 and z 7→ z + τ where Im(τ) > 0. 21

Hence the complex tori are determined by a choice of τ ∈ U in the upper half

plane.

However given a fixed lattice in C even a basis of the form (τ, 1) is not

unique. We can apply a unimodular matrix
(
a b
c d

)
∈ SL(2,Z) 22 to the basis

(τ, 1) to give a new basis (aτ +b, cτ +d) for the same lattice. Next let us again

use the automorphisms of the complex plane (affine transformations) to put

this new basis back into the form (τ ′, 1). A small calculation shows that

τ ′ =
aτ1 + b

cτ1 + d
(2.48)

We note that we can multiply both numerator and denominator in the above

equation by−1 and still get the same τ ′, hence we need only consider projective

unimodular matrices PSL(2,Z). Summarizing, two complex tori are equivalent

if related by a transformation in PSL(2,Z) acting on the upper half plane U .

Since PSL(2,Z) is discrete we have that the action on U is discontinuous in

the sense of [FK92] pg. 203. It can be shown that as a naive set

CT
∼= U/PSL(2,Z) = C (2.49)

However, we note that the above action is not free. Hence CT is not a

smooth manifold, but in fact has 2 singular points with extra internal struc-

ture. In other words the moduli space CT is a stack and it is not true that

21We see that the universal covering space of a torus is just C. The automorphisms
(transformations that preserve the complex structure) of C are just the affine transformations
z 7→ az+ b where a, b ∈ C and a 6= 0. Using these automorphisms we can transform a given
lattice generated by arbitrary vectors α and β into a unique lattice generated by vectors of
the form 1 and τ with Im(τ) > 0. The resulting complex structure on the torus is unaffected.

22Explicitly a, b, c, d ∈ Z and ad− bc = 1
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π1(CT ) = π1(C) = 1. In fact it turns out (for a suitably-defined definition of

the fundamental group) that πstack
1 (CT ) ∼= MCG(T ) ∼= PSp(2,Z) ∼= PSL(2,Z)

where MCG(T ) is the mapping class group of the torus.

For closed higher genus (≥ 2) surfaces a similar result holds (technically

the construction is easier because a fine moduli space can be extracted from

the coarse moduli space). It happens that dimCCΣ = 3g − 3, but again there

are singularities which force us to treat CΣ as a stack. It turns out that again

πstack
1 (CΣ) ∼= MCG(Σ) (2.50)

We refer the reader to chapter 6 of [BK00].

Example 2.51. Now let us consider surfaces with parameterized holes. 23

In this case there are no singularities in CΣ. 24 The k-holed sphere requires

special treatment and must be dealt with separately in the three regimes k = 1,

k = 2, and k ≥ 3. The k-holed torus also must be analyzed by hand in the

regimes k = 1 and k ≥ 2. Higher genus (g ≥ 2) surfaces can be dealt with

uniformly, although much is still unknown. 25 We start with the sphere.

First, let us consider the sphere with one parameterized hole, i.e. the

unit disk ∆ = {z : |z| ≤ 1}. 26 The unit disk conformally maps to the

upper half plane U via the map z 7→ i1−z
1+z

, and the upper half plane has a

23from now on by “hole” we mean a removed open disk, i.e. Σ has parameterized boundary
circles. This is in contrast to a puncture, i.e. a removed point - see [FM07] pg. 64

24we emphasize that the boundary here is parameterized. For a constrasting example
suppose Σ is an annulus with unparameterized boundary. Then the moduli space is the real
interval (0, 1), which disagrees with the result stated here. See [FK92] page 211

25see [Bir74], although here we have the additional complication of parameterized holes
rather than simple punctures

26By the classification of exceptional Riemann surfaces the only simply connected Rie-
mann surfaces are C ∪ {∞}, C, and ∆ = {z : |z| ≤ 1}. Hence there is only one “disk” to
consider here. See [FK92] pg. 207
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unique complex structure, hence there is a unique complex structure on the

unit disk ∆. So we expect that C∆
∼= {pt}. However, we have forgotten

about the parameterization of the boundary S1 so we must take into account

the group Diff+(S1). To make the analysis easier for our purposes it suffices

to think about the boundary with a distinguished basepoint (rather than a

full parameterization). Hence let us consider the upper half plane U with a

distinguished basepoint on the real axis.

The automorphism group (the group that preserves the complex struc-

ture) of the upper half plane U is just PSL(2,R). In particular we can think

about the affine transformation z 7→ z + a for any real number a. But this

maps any choice of basepoint on the real axis to any other choice of basepoint,

so we conclude that the choice of basepoint is irrelevant. 27 Hence even with

a parameterized boundary we have C∆
∼= {pt}.

Example 2.52. Now consider a sphere with two parameterized holes (an

annulus). Again by the classification for exceptional Riemann surfaces the

only Riemann surfaces with π1(Σ) ∼= Z are C \ {0}, ∆ \ {0}, and the family

of standard annuli ∆r = {z ∈ C : r ≤ |z| ≤ 1} where r ∈ (0, 1) (i.e. all annuli

are just standard annuli). Hence (as we have already mentioned) the moduli

space of complex annuli C∆r is just the interval (0, 1). Here again, however,

we have forgotten the boundary parameterizations. Like before (and from now

on) we do not consider the full parameterizations, but rather a distinguished

basepoint on each boundary circle. It is clear that we can perform a rigid

rotation (which preserves the complex structure on the annulus) to rotate any

27More trivially instead we could just think of rigid rotations acting on the unit disk ∆
(these preserve the complex structure). Any arbitrary basepoint on the boundary circle can
be rotated to the point z = 1.
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Figure 2.1: A counterclockwise twist of a boundary circle with respect to a
second boundary circle. Instead of using parameterizations we depict distin-
guished basepoints. We provide visual markings to show the diffeomorphism.

arbitrary basepoint on the outer circle {z ∈ C : |z| = 1} to the point z = 1,

hence the choice of basepoint on the outer circle is irrelevant.

Now we have used up the rigid rotation automorphism (which is the

only automorphism of an annulus) hence we cannot dispense with the choice

of basepoint on the inner circle (we have a whole S1 worth of choices). In view

of this we see that the moduli space of annuli (with parameterized boundary)

is just C∆r
∼= (0, 1) × S1. 28 There are no singularities nor stack structure,

hence we directly calculate π1(C∆r)
∼= Z ∼= MCG∂(∆r).

29 See figure (2.1)

Example 2.53. More generally recall that we saw for closed surfaces πstack
1 (CΣ) ∼=

MCG(Σ). For compact oriented surfaces with k ≥ 1 holes we now sketch that

the same result is true although the presence of parameterized boundary cir-

cles enlarges the mapping class group considerably (for a detailed account see

[Bir74] and [FM07]).

In order to understand π1(CΣ) let us remind ourselves that previously

we obtained the moduli space CΣ from J (Σ) by identifying any two Riemann

28This is merely a homotopy equivalence because we are considering basepoints rather
than parameterizations.

29This is an enlarged mapping class group for surfaces with basepointed boundary circles.
In this case a Dehn twist in a collar neighborhood of a boundary circle is a non-trivial element
of the mapping class group. If the boundary circles were not parameterized/basepointed
then such a Dehn twist could be smoothly deformed (untwisted) back to the identity.
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surfaces (Σ, j1) and (Σ, j2) if there is a biholomorphic diffeomorphism Σ→ Σ

mapping one complex structure to the other. Now we have boundary circles

(equipped with basepoints) hence we further require that any diffeomorphism

maps basepoints to basepoints. Denote this space of biholomorphic basepoint-

preserving diffeomorphisms Diff+
∂ (Σ). 30

Rather than mod out by all such biholomorphic diffeomorphisms let us

consider a weaker notion of equivalence by defining Teichmüller space TΣ

where we identify any two Riemann surfaces if there is a biholomorphic diffeo-

morphism in Diff+
∂ (Σ) that can be smoothly deformed to the identity (clearly

such diffeomorphisms must be the identity on each boundary circle separately).

Denote this restricted subset Diff+
∂,0(Σ) ⊂ Diff+

∂ (Σ). In symbols we have

CΣ := J (Σ)/Diff+
∂ (Σ) (2.54)

and

TΣ := J (Σ)/Diff+
∂,0(Σ) (2.55)

On the other hand by definition Diff+
∂ (Σ)/Diff+

∂,0(Σ) is the mapping class

group MCG∂(Σ), so we see that

CΣ = TΣ/MCG∂(Σ) (2.56)

In this context the mapping class group is often called the Teichmüller group

Teich(Σ).

In the language of covering space theory we can view Teichmüller space

30obviously the diffeomorphism must preserve orientation as well.
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as a covering of moduli space

TΣ → CΣ (2.57)

where the deck transformations are just given by elements of MCG∂(Σ). The

usual covering space results tell us that 31

Deck Transformations ∼= π1(CΣ)/π1(TΣ) (2.58)

MCG∂(Σ) ∼= π1(CΣ)/1 (2.59)

In the above equation we have used the fact that J (Σ) is actually a con-

tractible space, and since modding out by diffeomorphisms that can be de-

formed to the identity does not change the homotopy type, we see that the

Teichmüller space TΣ is also contractible. So π1(TΣ) = 1. 32

Example 2.60. We have shown that for arbitrary compact oriented surfaces

with/without parameterized holes that

π1(CΣ) ∼= MCG∂(Σ) (2.61)

for suitably defined fundamental group and mapping class group. Hence it

is worthwhile to study MCG∂(Σ) a bit further. We already mentioned the

explicit results for the sphere with k = 0, k = 1, and k = 2 punctures. We

also mentioned that for the closed torus MCG∂(T ) ∼= PSL(2,Z).

Now consider a special family of examples - the unit disk with k ≥ 2

parameterized holes in the interior. This is not the sphere with k + 1 holes

31We can use this result if the deck group action is free, which is evidenced by the fact
that the resulting quotient manifold CΣ has no singularities.

32This explains the somewhat interchangeable roles that π1(CΣ), MCG∂(Σ), and Teich(Σ)
play in the literature.
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CCW

Figure 2.2: A counterclockwise braiding of two boundary circles with respect
to the distinguished outer boundary circle. Instead of using parameterizations
we depict distinguished basepoints. We provide visual markings to show the
diffeomorphism.

because here the outer (k+1)st boundary circle is considered distinguished and

fixed. These disks can be used as building blocks to analyze certain aspects of

all surfaces.

For concreteness consider the two-holed disk (k = 2) ∆2 embedded in

R2 using whatever standard embedding that the reader prefers (see the left

disk in figure (2.2) for our convention).

Now consider the counterclockwise braiding diffeomorphism c : ∆2 →

∆2 depicted in figure (2.2). This is a diffeomorphism of ∆2 that cannot be

smoothly deformed to the identity, hence is a nontrivial element of the mapping

class group. More generally for a disk with k parameterized holes we expect

that the braid group Bk on k strands is a subgroup of MCG∂(Σ).

Likewise each of the interior holes can be (separately) twisted via a full

counterclockwise Dehn twist θi : ∆2 → ∆2 for i = 1, ..., k (see figure (2.1)

for the case k = 1). Hence we convince ourselves that Zk is a subgroup of

MCG∂(Σ).

It is not difficult to see that a braiding operation, followed by any twist

operation, followed by the inverse braiding operation, can be written as a

different twist operation. In other words Bk is in the normalizer for Zk.
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In light of this it is not surprising that MCG∂(Σ) is the semidirect

product of Zk with Bk:

MCG∂(Σ) ∼= Zk oBk (2.62)

We have been incomplete in our analysis, however, since we have forgot-

ten that in conformal field theory each boundary component must be labelled

by a color from a finite set. It only makes sense to swap holes that have the

same coloring, so we are forced to consider instead of the full braid group Bk

the colored braid group CBk. So we have

MCG∂(Σ) ∼= Zk o CBk (2.63)

Example 2.64. Now consider the special case of the sphere with k parame-

terized holes. It is fairly trivial to analyze this case by excising a special disk

(from the last example) that contains all of the holes. The result is two pieces

- a disk ∆ and a disk ∆k with k holes. Then the mapping class group is

MCG∂(Σ) ∼= (Zk o CBk)/Zeverything (2.65)

Zeverything is the subgroup of Zk o CBk generated by the central element that

takes a full Dehn twist of the entire interior of ∆k (leaving the outer circle

fixed, of course). When the disks are glued together this Dehn twist can be

pushed onto ∆ instead, and any Dehn twist of ∆ can be smoothly deformed

to the identity. So we conclude that Zeverything is trivial for the sphere with

holes.

For example, for k = 2 holes (with the same coloring) the braid group

B2 becomes the symmetric group S2 when modding out by Zeverything.

36



MCG(Σ) in genus g ≥ 1 is significantly more complicated and much is

not known. We refer the reader to [FM07].

2.4 Axiomatic definition of an (n+1)-dimensional

TQFT

The axioms for an (n + 1)-dimensional TQFT were originally proposed by

Atiyah (see, e.g., [Ati90a]). They appear in various incarnations throughout

the literature, but we follow chapter 3 of [Tur94].

Modular functor

Consider the category U defined by

1. The objects are (possibly extended) n-dimensional closed oriented man-

ifolds Σ. We are interested in the case n = 2, and for us the extended

structure on a closed genus g surface Σ is a parameterization diffeomor-

phism

φ : Σstandard
g → Σ (2.66)

where Σstandard
g is a fixed genus g surface. 33

2. The morphisms are orientation-preserving diffeomorphisms Σ→ Σ′.

U has a canonical commutative strict monoidal structure (see chapter (4)):

33The parameterization can be relaxed to a much weaker extended structure. See
[Ati90b],[Wal91],[FG91].
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1. The tensor product is given by disjoint union:

Σ � Σ′ := Σ t Σ′ (2.67)

2. The unit object 1 is the empty set ∅ (since Σ t∅ = Σ).

3. U is commutative, i.e. Σ t Σ′ = Σ′ t Σ.

Now consider the category Vectfin
C

of finite-dimensional complex vector

spaces. This is also a commutative strict monoidal category (using the ordinary

vector space tensor product ⊗). The unit object here is C.

Definition 2.68. A modular functor F is a covariant strict monoidal func-

tor (see chapter (5))

F : U → Vectfin
C

(2.69)

In other words, to each n-dimensional extended closed oriented manifold

Σ we assign a vector space F (Σ):

Σ
� F //F (Σ) (2.70)

To each orientation-preserving diffeomorphism f : Σ → Σ′ we assign a vector

space isomorphism F (f) : F (Σ)→ F (Σ′) (which we denote f]):

f � F // f] (2.71)

Functoriality means (fg)] = f]g] and idΣ 7→ id] = idF (Σ).

Being a strict monoidal functor means that in addition

F (Σ t Σ′) = F (Σ)⊗F (Σ′) (2.72)
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There are extra associativity and naturality axioms for strict monoidal functors

that can be found in chapter (5). Most notably we have the identity assignment

F (∅) = C (2.73)

It is interesting to contrast with the Segal modular functor in section 2.3.

Most conspicuous is the lack of gluing in this version. An n = 2 modular

functor as defined here is weaker than a Segal modular functor. 34 We mention

that the extended structure on Σ for the case n = 2 can be weakened to a

choice of distinguished Lagrangian subspace of H1(Σ).

(n+ 1)-dimensional TQFT

We require 2 more categories. First consider the bordism category Bordn+1

defined by

1. The objects are the same as the objects in U (extended closed oriented

n-manifolds).

2. The morphisms are (n+ 1)-dimensional compact oriented bordisms, i.e.

for objects Σ and Σ′ a morphism Σ → Σ′ is an (n + 1)-dimensional

oriented manifold X such that ∂X = −Σ t Σ′. The bordisms may also

have extended structure. 35

34The nomenclature is confusing. In chapter 5 of [Tur94] is described a so-called 2-d
modular functor. The construction has much more structure than a modular functor in 2
dimensions (as defined here and in chapter 3 of [Tur94]). Following [BK00] we prefer to
call the stronger version an extended 2-d modular functor. Presumably extended 2-d
modular functors are in one-to-one correspondence with the Segal modular functors defined
above.

35For a (2 + 1)-dimensional theory there is no need to endow bordisms with extended
structure in order to define a theory with anomaly (see below). However an anomaly-free
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Consider a different category of bordisms B defined by

1. The objects X in B are the morphisms in Bordn+1, i.e. (extended) com-

pact oriented (n + 1)-dimensional bordisms between extended oriented

closed n-manifolds.

2. The morphisms are orientation-preserving diffeomorphisms between bor-

disms f : X → X ′.

B has a canonical commutative strict monoidal structure:

1. The tensor product is given by disjoint union:

X �X ′ := X tX ′ (2.74)

2. The unit object 1 is the empty set ∅ (since X t∅ = X).

3. B is commutative, i.e. X tX ′ = X ′ tX.

Definition 2.75. An (n+1)-dimensional topological quantum field the-

ory τ based on (F ,U ,Bordn+1,B) is a rule:

1. Given a bordism X ∈ Mor(Σ,Σ′) between Σ ∈ Ob(Bordn+1) and Σ′ ∈

Ob(Bordn+1) assign a linear map

τ(X) : F (Σ)→ F (Σ′) (2.76)

2. This rule must be projectively functorial with respect to the category

Bordn+1 (i.e. satisfy a gluing property). Consider a bordism X between

theory requires an extended structure on X (in the language of [Tur94] these are weighted
extended bordisms). See [Ati90b],[Wal91],[FG91].
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Σ and Σ′ and another bordism X ′ between Σ′ and Σ′′. Then glue the

bordisms together along Σ′ to form a bordism X ∪glue X
′ : Σ→ Σ′′. We

require that: 36

τ(X ∪glue X
′) = kτ(X ′) ◦ τ(X) (2.77)

where k ∈ C× is an invertible number called the gluing anomaly (if

k = 1 then the theory is said to be anomaly-free).

Since the cylinder Σ× I is the identity morphism Σ→ Σ in the category

Bordn+1, projective functoriality also requires that

τ(Σ× I) = idF (Σ) (2.78)

3. In terms of the category B we have an assignment

τ : B → finite-dim linear maps (2.79)

We require this map be a strict monoidal functor. This means (among

other things) that

τ(X1 tX2) = τ(X1)⊗ τ(X2) (2.80)

4. Finally we require a compatibility on the categories U , B, and Bordn+1:

if f : X → X ′ is a morphism in B (f : X → X ′ is an orientation-

preserving diffeomorphism of bordisms) then the following diagram must

36The anomaly k measures how far τ is from being a functor Bordn+1 → Vectfin
C .
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commute:

F (∂−X)
τ(X) //

(f |∂−X)]
��

F (∂+X)

(f |∂+X)]
��

F (∂−X
′)

τ(X′) //F (∂+X
′)

(2.81)

Extended (2 + 1)-dim TQFTs and extended 2-d modular

functors

The definition of TQFT provided above applies in any dimension. However in

(2 + 1)-dimensions most known theories satisfy stronger properties and can be

interpreted as extended (2 + 1)-dim TQFT (or TQFT with corners). We

refer the reader to chapter 4 of [BK00] for the relevant extended axioms, 37

but briefly this means that the objects in U are not closed 2-surfaces, but

instead are compact surfaces with marked arcs (or parameterized boundary

circles). The bordisms are also extended to include colored ribbon graphs

with ends that terminate on the marked arcs. The construction provided here

in chapter (4) is manifestly extended.

Likewise, the notion of modular functor can be strengthened to an ex-

tended 2-d modular functor (see chapter 5 of [BK00]). The main addi-

tional feature is that colored boundary circles are allowed, and they can be

glued (compare with the Segal modular functor).

The known causality relationships between these notions are depicted

37In particular the theories of Deloup described in [Del99],[Del01],[Del03] are not ex-
tended. Links are intrinsic in the construction, however ribbon graphs do not appear.
Furthermore the boundary surfaces are always closed manifolds.

42



in the following diagram (as described in section 5.8 of [BK00]):

Modular
Tensor

Category

+3

))SSSSSSSSSSSSSSSSSSSS
Extended

(2 + 1)-dim TQFT

��

+3(2 + 1)-dim TQFT

��
Extended 2-d Modular Functor

gg
08hhhhhhhhhhhhhhhhhhhhhhhhhh

hhhhhhhhhhhhhhhhhhhhhhhhhh +32-d Modular Functor

Segal Modular Functor
��

?

KS

(2.82)

The broken line indicates that under certain circumstances an extended 2-d

modular functor reproduces a modular tensor category (see theorem 5.7.10 in

[BK00]).
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Chapter 3

Toral Chern-Simons Theories

In this chapter we aim to give a brief summary of toral Chern-Simons theories

as described by Belov and Moore in [BM05]. Belov and Moore give a much

more general description that includes spin TQFTs, but in the context of

modular tensor categories we are confined to ordinary TQFTs. Hence in this

paper we shall mostly limit ourselves to the ordinary (non-spin) Chern-Simons

theories.

We will strive to keep the notation found in [BM05] to avoid confusion.

3.1 Classical toral Chern-Simons theories

Classical Chern-Simons theories for arbitrary compact gauge groups were stud-

ied by Freed in [Fre95, Fre], and the U(1) theory was studied later by Manoliu

[Man98].

To begin we consider Chern-Simons theory for an arbitrary gauge group

G. Let X3 be a compact oriented 3-manifold. Let P → X3 be a principal
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G-bundle equipped with a connection Θ. 1 let ρ be a real representation

of G, and let E → X3 be the associated vector bundle. Denote by D the

covariant derivative induced on E by the connection Θ on P . If we assume

that P is trivializable 2 and that a global section p : X3 → P has been chosen

then the trivialization induces the standard flat connection Θ0. Since P is

trivializable we know that necessarily the associated bundle E is trivializable.

3 In that case the standard flat Ehresmann connection Θ0 induces a standard

flat covariant derivative D0 on E, and since the two covariant derivatives live

in the same affine space we can write D = D0 + A for some vector potential

A ∈ Ω1(X3; End(E)). In a local trivialization of E near a given point x ∈ X3

we can think of the vector potential as a 1-form on X3 valued in (a subgroup

of) gl(n) where n is the dimension of E.

However D and D0 are not merely arbitrary gl(n) connections, but

rather they arise from connections on a principal G-bundle (they are G-

connections). Hence they respect the underlying G-structure of the vector

bundle E. For example, if G = SO(n) then E comes equipped with an in-

ner product. In that case we can imagine picking an orthonormal basis in a

fiber and parallel transport it to neighboring fibers. The result should be an

orthonormal basis in the other fibers as well. This is in contrast to a general

gl(n) connection that may evolve the orthonormal basis into an arbitrary basis

in the other fibers.

So we require that the vector potential is actually Lie algebra valued,

i.e. A ∈ Ω1(X3; g). In the G = SO(n) example the vector potential is valued

1a G-equivariant g-valued horizontal 1-form on P , i.e. an Ehresmann connection.
2P admits a global section.
3For a straightforward account of Chern-Simons actions for trivializable bundles see

[BM94].

45



in so(n) (infinitesimal rigid rotations).

Since the vector potentialA is endomorphism-valued (actually Lie algebra-

valued), and in any fiber an endomorphism is just a matrix (with respect to an

arbitrary basis), there is a well-defined trace Tr. 4 Therefore the Chern-Simons

action integral ∫
X3

Tr(A ∧ dA+
2

3
A ∧ A ∧ A) (3.1)

is well-defined (we multiply matrices where necessary before taking the trace).

In order to proceed further it is necessary to consider the role of the

choice of trivialization on E that defines D0. Recall that a gauge transfor-

mation is a smooth map X3 → G. Given a point x ∈ X3 the group element

g(x) ∈ G acts on the fiber Px (or acts on the vector bundle fiber Ex). In partic-

ular a gauge transformation maps the chosen global section (trivialization) to

a new global section (trivialization). Conversely, it is clear that any two trivi-

alizations are related by such a gauge transformation. Hence different choices

of trivialization can be neatly encoded in the group of gauge transformations.

On the other hand it is a basic physical axiom of gauge theory that if

two connections are related by a gauge transformation then they are physically

indistinguishable, i.e. the mathematical description of a gauge theory is re-

dundant. After modding out by gauge transformations we see that the choice

of trivialization is irrelevant. Hence it is enough for P to be trivializable. 5

In order for this physical axiom to be consistent, however, it is necessary

to check that gauge transformations do not alter the action integral above. It

4which is independent of the basis by cyclicity.
5Let us clarify that choosing a trivialization is not gauge fixing. We have merely argued

that the choice of trivialization is irrelevant up to gauge. Even armed with a choice of
trivialization we must still mod out by the group of gauge transformations. The gauge axiom
actually shrinks configuration space (which has the pleasant side-effect that the choice of
trivialization is inconsequential).
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is straightforward to check that this integral is invariant under small gauge

transformations (gauge transformations that can be continuously deformed to

the trivial gauge transformation).

Under large gauge transformations, however, the integral shifts by an

integer N (if A is properly normalized) and hence is not well defined. However

the complex exponential

exp
(

2πik
∫
X3

Tr(A ∧ dA+
2

3
A ∧ A ∧ A)

)
(3.2)

is well-defined, even under large gauge transformations, for any integer k (the

level).

The above construction relied on the assumption that E is trivialized. It

is a fact that if G is a connected and simply-connected Lie group (e.g. SU(2))

then (see for example [DW90]) any principal G-bundle over a manifold of

dimensional ≤ 3 is trivializable. In that case this construction is always well-

defined.

On the other hand, U(1)N is not simply-connected and it is not true that

any principal U(1)N -bundle over a 3-manifold is trivializable. Nevertheless, for

now we write explicitly the above action for U(1) where we assume that E is

trivialized:

exp
(

2πik
∫
X3

Tr(A ∧ dA)
)

(3.3)

Any real irreducible representation of U(1) is a two-dimensional vector

space where an element eiθ acts by a rigid rotation

 cos(2πnθ) sin(2πnθ)

−sin(2πnθ) cos(2πnθ)

 (3.4)
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For each integer n there is a unique irreducible representation ρn. The Lie

algebra is u(1) ∼= iR.

Hence we can dispense with trace Tr and the representation ρn and

simply work in the defining representation n = 1 at the cost of banishing an

integer to the front of the action integral:

exp
(

2πikn2
∫
X3

(A ∧ dA)
)

(3.5)

Here it is understood that A is now valued in the defining representation.

More generally any (not necessarily irreducible) real representation is

written as a direct sum of irreducibles
⊕
mnρn where mn is the multiplicity

(only nonzero for finitely-many ρn’s). For such representations the vector

potential A is no longer valued in iR, but rather it is valued in diagonal matrices

with values in iR along the diagonal. Taking the trace gives (mn1n
2
1 +mn2n

2
2 +

. . . )A∧dA where now once again A takes values in the defining representation.

We can absorb this arbitrary integer into the level k. Then we have the

U(1) Chern-Simons action for a trivialized bundle

exp
(

2πik
∫
X3

A ∧ dA
)

(3.6)

Notice that we no longer need to specify the representation because A is as-

sumed to be in the defining representation ρ1.

For U(1) theories it is much more convenient to define B = 2k to be

the “level”. B is obviously an even integer for the ordinary theories that we

are describing now:

exp
(
πiB

∫
X3

A ∧ dA
)

(3.7)
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If the bundle E is not trivializable, however, then a different technique

must be used to define the Chern-Simons action [DW90]. Choose a 4-manifold

Z4 such that X3 is the boundary of Z4 (such a manifold always exists by

Rokhlin’s theorem [PS96, pg. 87]). 6 In some cases (depending on the gauge

group G) the bundle E can be extended to a G-bundle Ẽ → Z4. For G a torus

this is always possible. 7

Next arbitrarily extend the connection D on E to a connection D̃ on

Ẽ (using a partition of unity). If F̃ denotes the curvature of D̃ then we can

define the Chern-Simons action to be the integral of the second Chern class

exp
(
πiB

∫
Z4

Tr(F̃ ∧ F̃ )
)

(3.8)

We have used similar arguments as those above to absorb the representation

information into the even-valued integer coefficient B. It is not difficult to

check using Stokes’ theorem that if E is trivializable then this action reduces

to our first naive action.

The reader may be concerned that this integral depends upon the choice

of 4-manifold Z4, but a standard argument shows that it does not. Given two

such manifolds Z4 and Z ′4 then we can glue them together along their common

boundary X3 producing a closed oriented 4-manifold (−Z4) ∪ Z ′4 (here −Z4

denotes reversed orientation). Now the integral of a Chern class over a closed

6In fact a well-defined Chern-Simons theory exists for arbitrary compact gauge groups
without appealing to 4-manifold extensions. If H3(BG) = 0 (which it does for any torus)
then a Chern-Simons theory can be constructed directly using results in [Fre]. Even more
generally it is shown there that H3(BG) is at most a finite group, and even then a classical
Chern-Simons theory can be constructed by studying H4(BG).

7It is pointed out in [BM05] that any obstruction to such an extension lives in the oriented
bordism group Ω3(BG) of the classifying space BG. It is also mentioned in [BM05] that for
G abelian Ω3(BG) = 0, hence we will always be able to extend the bundle in this paper.
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oriented manifold is an integer N , i.e.

exp

(
πiB

∫
(−Z4)∪Z′4

F̃ ∧ F̃
)

= exp (πiBN) = 1 (3.9)

Furthermore this integer is independent of the extending connection Ã.

On the other hand the LHS is just

exp

(
πiB

(
−
∫
Z4

F̃ ∧ F̃ +
∫
Z′4

F̃ ∧ F̃
))

(3.10)

Hence

exp
(
πiB

∫
Z4

F̃ ∧ F̃
)

= exp

(
πiB

∫
Z′4

F̃ ∧ F̃
)

(3.11)

If in addition we equip X3 with a spin structure then there exists a

compatible extending spin 4-manifold Z4 [BM05]. In that case the integral of

the second Chern class is an even integer. Hence the action is well defined

even if we allow B to be any arbitrary integer. So spin theories are classified

by arbitrary integers, and ordinary theories are classified by even integers.

Now we generalize to the case where the gauge group is G = U(1)N .

Consider a principal U(1)N -bundle P → X3 equipped with a connection Θ.

For each projection πα : U(1)N → U(1) where α ∈ 1, . . . , N we can construct a

U(1) bundle Pα via a similar technique that is used to construct an associated

bundle. That is, in general if G → H is a group equipped with a homomor-

phism into H then a principal G-bundle P induces a principal H bundle Q.

This can be constructed by considering the space P ×H modded out by the

right G action (p, h) 7→ (p · g, g−1 · h). Furthermore if P is equipped with a

connection Θ then there is an induced connection ΘQ on Q.

In our case for each α factor U(1) in U(1)N we have a principal U(1)-
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bundle Pα equipped with a connection Θα.

A real irreducible representation of U(1)N is a two-dimensional vector

space where each U(1) factor acts as an independent U(1) irreducible repre-

sentation (all commuting with each other). This representation induces an

associated bundle E → X and a covariant derivative D.

On the other hand, since each α factor acts as an independent U(1)

irreducible representation, we have that each Pα also has a rank two associated

bundle Eα → X3 with a covariant derivative Dα on Eα. Denote the resulting

curvature 2-forms by Fα.

Then it is not difficult to show using similar reasoning to that used

above (see page 8 of [BM05]) that such actions are given by extensions to a

U(1)N -bundle Ẽ → Z4. Such a bundle decomposes as the direct sum of N

U(1)-subbundles Ẽα → Z4 where α is an index counting from 1 to N . Let

F̃α denote the curvature 2-form of Ẽα. Since each Ẽα is a U(1)-bundle we

have that F̃α is valued in iR (so we leave out any traces that should appear).

Consider the action

exp
(
πiBαβ

∫
Z4

F̃α ∧ F̃ β
)

(3.12)

where B is a nondegenerate symmetric matrix (B is necessarily symmetric

since F̃α commutes with F̃ β). Expanding this becomes

exp

πi
Bαα

∫
Z4

F̃α ∧ F̃α +
∑
α<β

2Bαβ

∫
Z4

F̃α ∧ F̃ β

 (3.13)

In light of what we saw for the U(1) case it is necessary that each diag-

onal entry in B be an even integer. Since an extra factor of 2 already appears

in the second term from double-counting the off-diagonal entries are arbitrary
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integers. In other words B is an integer-valued nondegenerate symmetric bilin-

ear form with even integers along the diagonal. We will call such a symmetric

bilinear form even.

It is worth noting that if we endow X3 with a spin structure and ex-

tend to a compatible spin 4-manifold Z4 then the diagonal entries can also be

arbitrary integers.

Every nondegenerate symmetric bilinear integral form B (not necessar-

ily even) can be thought of as the inner product on a lattice. Summarizing

these results is the following proposition [BM05]:

Proposition 3.14. Classification of classical toral Chern-Simons

1. The set of ordinary classical toral Chern-Simons theories is in one-to-one

correspondence with even lattices (Λ, B).

2. The set of spin classical toral Chern-Simons theories is in one-to-one

correspondence with arbitrary lattices (Λ, B).

3.2 Quantization of lattices

In the previous section we have seen that an abelian classical Chern-Simons

theory (including a spin theory) is determined by an integer lattice Λ equipped

with a symmetric bilinear form B : Λ× Λ→ Z.

Since we are not interested in the general spin case for now we mostly

limit our discussion to even symmetric bilinear forms. In basis-independent

language we mean symmetric bilinear forms B such that B(X,X) ∈ 2Z for

every X ∈ Λ.
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It will happen that the canonical quantization program described in

section (3.3) will rely heavily on the aspects of lattices described here. We

abusively call this “quantization of lattices”. The easiest piece of data that

can be harvested from a lattice (Λ, B) (even or not) is the signature C ∈ Z of

the bilinear form.

For the remaining data we require the following definition:

Definition 3.15. Let R be a ring. A nondegenerate R-valued quadratic

form on an abelian group (e.g. a lattice) is a function Q : Λ→ R such that:

• Q(X + Y )−Q(X)−Q(Y ) +Q(0) defines a bilinear and nondegenerate

symmetric form

• We say that Q is a pure quadratic form if Q(nX) = n2Q(X) for every

integer n (in particular Q(0) = 0).

In this paper if we accidentally drop the “pure” modifier than we still

mean pure - we will explicitly say “generalized” otherwise.

Any even lattice (Λ, B) induces a pure quadratic form Q : Λ→ Z given

by the formula (division by 2 makes sense because B is even)

Q(x) =
1

2
B(X,X) (3.16)

We note that (for even lattices) the pure quadratic form and the bilinear form

determine each other: given a pure quadratic form Q a bilinear form can be

recovered with the formula

B(X, Y ) = Q(X + Y )−Q(X)−Q(Y ) (3.17)
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Q is a pure quadratic refinement of B.

Discriminant group

From an arbitrary lattice (which determines a classical theory) we construct a

finite abelian group D (the discriminant group). The bilinear form B descends

to a bilinear form b : D × D → Q/Z, and if the lattice is even then the pure

quadratic form Q on Λ descends to a pure quadratic form q : D → Q/Z as

well [Nik80].

The content of the work of Belov and Moore is that quantum toral

Chern-Simons theory is (almost) completely determined by (D, q), i.e. we

have a quantization map

Ordinary classical Chern-Simons→ Ordinary quantum Chern-Simons

(3.18)

that is encoded in the map

Even lattice (Λ, B)→ Discriminant Group (D, q, c) (3.19)

where c ≡ C mod 24 (C is the signature of the bilinear form B). The above

map is surjective, however it is not injective. 8 9

The construction of the group is as follows: consider the dual lattice

Λ∗. Since we have a nondegenerate symmetric bilinear form B we have an

embedding of the lattice into its dual Λ
f→ Λ∗ given by X

f7→ B(X, ·). In

general this map is not invertible over the integers (e.g. it is not possible to

8There is a slight error in the main theorem of [BM05]. See appendix (A).
9It is important to note that, in contrast to a lattice, a quadratic form on a finite group

supplies more information than a bilinear form.
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invert the 1× 1 matrix B = (2) over the integers) but it can be inverted over

the rationals. So let V = Λ ⊗ Q and V ∗ = Λ∗ ⊗ Q be vectors spaces that

contain Λ and Λ∗, respectively.

In this case f is invertible and hence we have the (restricted) map

f−1 : Λ∗ ⊂ V ∗ → V . It is easy to see that Λ is in the image of Λ∗, so we can

think of Λ as a sublattice of Λ∗ (all embedded in V ). From now on we will

think of both Λ and Λ∗ as being embedded in V . The finite abelian group is

just the quotient D = Λ∗/Λ.

It is straightforward to check that the bilinear form B : V × V → Q

descends to a (nondegenerate, symmetric) bilinear form b : D×D → Q/Z and

that, if the lattice is even, the pure quadratic form Q : V → Q also descends

to a pure quadratic form q : D → Q/Z.

Example 3.20. As an example, consider the rank 1 lattice Λ = Z equipped

with the bilinear form B = (4). So B(1, 1) = 4 and, since this is an even

lattice, Q(1) = 4
2

= 2. Tensoring over Q we see that Λ consists of the numbers

Λ = {. . . ,−1, 0, 1, 2, 3, . . . } (3.21)

and Λ∗ (through the map f−1) consists of the fractions

Λ∗ = {. . . ,−1/4, 0, 1/4, 1/2, 3/4, 1, 5/4, . . . } (3.22)

The discriminant group D is just

D = {0, 1/4, 1/2, 3/4} ∼= Z4 (3.23)
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The induced bilinear form is just

b(1/4, 1/4) = B(1/4, 1/4) (mod 1) = 1/4∗4∗1/4 (mod 1) = 1/4 (mod 1)

(3.24)

and the induced quadratic form is

q(1/4) =
1

2
B(1/4, 1/4) (mod 1) = 1/8 (mod 1) (3.25)

The value of b and q on the generator 1/4 determines all of the values com-

pletely. 10

Since the rank of the lattice (here rank N = 1) is just the rank of the

original gauge group U(1)N we say that the above example is “U(1) Chern-

Simons at level B = 4”. Obviously the “level” becomes a matrix in higher

rank.

Example 3.28. Let us consider another example. For this let us forget the

lattice and just consider the same finite abelian group

D = {0, 1/4, 1/2, 3/4} ∼= Z4 (3.29)

We keep the same bilinear form

b(1/4, 1/4) = 1/4 mod 1 (3.30)

10True since b is bilinear and q is pure. For a choice of generator x any two arbitrary
elements can be written as nx and mx for integers n and m. Hence

b(nx,mx) = mnb(x, x) (3.26)

and
q(nx) = n2q(x) (3.27)
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but use a different pure quadratic refinement

q(1/4) = 5/8 mod 1 (3.31)

(we obtained this quadratic form by taking the value of the previous quadratic

form on the generator and adding 1/2). It is easy to verify that this pure

quadratic form is a refinement of b. This is clearly not U(1) at level 4. It is

also not clear that this data lifts to a lattice. 11

So for D = Z4 and the same bilinear form we have found two distinct

pure quadratic refinements.

Example 3.32. Consider a rank 1 lattice Λ = Z with bilinear form B = (3).

This lattice is not even, so it does not induce a pure quadratic refinement.

The discriminant group is

D = {0, 1/3, 2/3} ∼= Z3 (3.33)

and the induced bilinear form is

b(1/3, 1/3) = B(1/3, 1/3) mod 1 = 1/3 ∗ 3 ∗ 1/3 = 1/3 mod 1 (3.34)

As stated, a pure quadratic form is not induced by this lattice.

However, if we disregard the classical lattice and simply consider the

group D = Z3 equipped with the bilinear form b as above then we can produce

11However, we will see below that it does. All pure quadratic forms on finite abelian
groups will be realized by even lattices.
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a pure quadratic refinement of b:

q(1/3) = 2/3 mod 1 (3.35)

q(2/3) = 1/3 mod 1 (3.36)

q(0) = 0 mod 1 (3.37)

Again, it is enough to specify q on the generator, but we list all of the values

explicitly for clarity. It is routine to verify that this pure quadratic form is a

refinement of b. It is also straightforward to check that this is the unique pure

quadratic form that is compatible with b (see lemma (3.38)).

However, this theory is not U(1) at level 3 (the first part of this example)

since that lattice did not induce a pure quadratic form (it is not an even

theory). The theory described here, however, can be lifted (as we shall see) to

a different (greater rank) even lattice since q is pure.

By studying these two examples and considering the possible bilinear

forms and corresponding pure quadratic refinements on an arbitrary cyclic

group we have the following proposition (which is clearer if the readers prove

it for themselves)

Lemma 3.38. Let D be a cyclic group ZN equipped with a symmetric bilinear

form b : D ×D → Q/Z (possibly degenerate). Then:

1. If b = 0 then q = 0 identically.

2. If b 6= 0 and N is even then there are exactly two pure quadratic refine-

ments of b (on a generator x we have either q0(x) or q1 = q0(x) + 1
2
).
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3. If b 6= 0 and N is odd then there is a unique pure quadratic refinement

of b.

Proof. Pick a generator x for D. Since Nx ≡ 0 we have that

b(x, x) =
m

N
(3.39)

for some integer m < N . Since q is pure we have that

b(x, x) = q(x+x)−q(x)−q(x) = q(2x)−2q(x) = 4q(x)−2q(x) = 2q(x) (3.40)

so q(x) = 1
2
b(x, x). Hence we are left to consider the ambiguity when dividing

by 2 in Q/Z.

If N is even then we obtain two possibilities for q on a generator x:

q(x) =
m

2N
or

m

2N
+

1

2
(3.41)

It is easy to verify that both of these options are well defined (i.e. q(Nx) = 0).

The value on an arbitrary element nx is defined by asserting purity q(nx) =

n2q(x).

If N is odd then having a 2N in the denominator does not produce a

well-defined pure quadratic form. Since N is odd there exists instead a unique

integer m′ mod N such that

2m′ ≡ m mod N (3.42)

So we define q(x) = m′/N .

It is also straightforward to check that a different choice of generator x
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gives back one of these examples (hint: write the new generator in terms of

the old).

In particular, since an arbitrary finite abelian group can be decomposed

(not uniquely!) as a direct sum of cyclic groups of prime power order we have

Lemma 3.43. Any arbitrary finite abelian group D equipped with a symmetric

bilinear form b (perhaps degenerate) admits a pure quadratic refinement.

Proof. Choose a decomposition of D into cyclic groups. Each cyclic factor

ZNi considered by itself has a (possibly degenerate) symmetric bilinear form

bi which is just the restriction of b to ZNi . By lemma (3.38) choose a pure

quadratic refinement qi.

Now we must combine the qi’s into a pure quadratic refinement q defined

on the whole group. Given an element of the form x + y ∈ D where x is in

one factor i and y is in another j define

q(x+ y) := b(x, y) + qi(x) + qj(y) (3.44)

It is easy to see that this is the only possibility (and that q is pure).

The existence of a pure quadratic refinement will be useful in the sequel.

Gauss sums (reciprocity)

We hinted above in equation (3.19) that we must manually keep around in-

formation about the signature C of B when we quantize since passing to the

discriminant group “loses memory” of the signature (for our purposes we ac-

tually only need to keep the value of c = C mod 24).
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However some information about C is maintained in (D, q) alone. Gauss

proved a relation (a Gauss sum or reciprocity) on rank 1 even lattices that has

since been extended to arbitrary even lattices. For reference see Milnor and

Husemoller [MH73] (especially the appendix. We note that the majority of the

book applies to unimodular lattices only, i.e. detB = ±1). Other references

include Nikulin [Nik80]

In fact the induced quadratic refinement q on D can reproduce infor-

mation about the signature (but only mod 8) according to the formula

1√
|D|

∑
x∈D

exp (2πiq(x)) = exp (2πiC/8) (3.45)

Example 3.46. Consider again example (3.20) which is U(1) at level 4. Com-

puting the Gauss sum gives C ≡ 1 mod 8 which agrees with expectation since

this theory arises from a rank 1 lattice equipped with a bilinear form with

signature 1.

Now consider example (3.28) which was a theory different from U(1) at

level 4. From Gauss sum considerations we see that, if the theory is realized

by an even lattice (which it is), then the signature of the lattice mod 8 is

C ≡ 5 mod 8 (clearly not a rank 1 lattice).

Generalized quadratic forms and spin theories

Let us return momentarily to arbitrary (not necessarily even) lattices (Λ, B).

Although spin theories are not the subject of this paper, we wish to clarify for

ourselves some of the constructions that are discussed in [BM05]. In addition

we make explicit some observations that are not mentioned there.
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We have seen that we have a quantization map encoded in the map

Even lattice (Λ, B)→ Discriminant Group (D, q, c) (3.47)

However, [BM05] specifies a quantization for arbitrary lattices, so we should

have a more general map

Lattice (Λ, ?1)→ Discriminant Group (D, ?2, c) (3.48)

It is not immediately clear what should play the role of ?1 and ?2. Let us

describe the construction.

It is easy to see that for any symmetric nondegenerate bilinear form

B (even or not) on Λ there exists an element W ∈ Λ∗ such that B(X,X) =

B(X,W ) mod 2 for every X ∈ Λ. In fact, if W satisfies this then it is trivial

to show that W + 2λ does as well for any λ ∈ Λ∗. Conversely, since B is

nondegenerate it is also trivial to see that if W and W ′ satisfy the condition

then W ′ = W + 2λ for some λ ∈ Λ∗.

In other words there exists a unique class [W ] ∈ Λ∗/2Λ∗ such that

B(X,X) = B(X, [W ]) mod 2 for every X ∈ Λ. Such a class is called the

characteristic class [BM05] or the Wu class [Del99] for the lattice (Λ, B). We

call a specific choice of W in Λ∗ a Wu representative.

As a special case if the lattice is even then (by definition) B(X,X) =

0 mod 2 for every X ∈ Λ, hence [W ] = [0] ∈ Λ∗/2Λ∗. Conversely if [W ] = [0]

then the lattice is even. Since one of the representatives of [0] is just the

identity element W = 0 ∈ Λ∗ we have - in the case of even lattices - a canonical

choice W = 0 picked out. For odd lattices there is no such distinguished
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representative.

So for even lattices (that we have already considered) the construction

that follows momentarily reduces to a single pure quadratic form by setting

W = 0. For the general theory there will be no preferred representative, hence

no preferred generalized quadratic form; we will be forced to be content with

an equivalence class of (generalized) quadratic forms on D.

Let us start with a definition:

Definition 3.49. Let q and q′ be two Q/Z-valued generalized quadratic forms

on a finite abelian group D. Then we say that q is equivalent to q′ if there

exists a fixed δ ∈ D such that q′(x) = q(x− δ) for every x ∈ D.

Now finally we are ready to construct a set of generalized quadratic

forms. Consider a lattice (Λ, B) where generically B is odd. Consider the

induced discriminant group D and the induced bilinear form b. Since B is

generically odd we do not have an induced pure quadratic form.

From the lattice (which defines a Wu class [W ]) we need an algorithm

to construct a generalized quadratic form Q : V → Q that descends to a

well-defined generalized quadratic form q : D → Q/Z. Let all of the Wu

representatives of [W ] be denoted by {Wi}i∈Z. Since we have infinitely-many

representatives Wi we will not be able to construct a single quadratic form,

but rather a family of quadratic forms (we shall see momentarily why this

constant term is used):

QWi
(X) :=

1

2
B(X,X −Wi) +

1

8
B(Wi,Wi) (3.50)
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Each QWi
descends to a well-defined generalized quadratic form on D

qi(x) :=
1

2
B(X,X −Wi) +

1

8
B(Wi,Wi) mod 1 (3.51)

where X ∈ Λ∗ is an arbitrary lift of x ∈ D (the choice of lift does not affect

the value of the form because of the defining property for Wi).

It is routine to verify that each qi is a generalized quadratic refinement

of b (i.e. qi(x+ y)− qi(x)− qi(y) + qi(0) = b(x, y)).

Perhaps more interesting, if Wi,Wj ∈ Λ∗ are two Wu representatives

of [W ] then it is easy to show (using that fact that Wi = Wj + 2λ for some

λ ∈ Λ∗) that the generalized quadratic refinements qi and qj are equivalent in

the sense defined above.

Even further, it is a simple calculation to show that an entire equiv-

alence class of generalized quadratic forms is realized by the set of all Wu

representatives {Wi}i∈Z. So [W ] determines completely an equivalence class

of generalized quadratic refinements which we denote by

[qW ] (3.52)

Now we know exactly what to substitute for ?1 and ?2 in the more

general quantization map above:

Lattice (Λ, {QWi
})→ Discriminant Group (D, [qW ], c) (3.53)

It is easy to see that this map reduces to the old quantization map

defined only on even lattices (where [W ] = [0]) by picking the special pure

quadratic refinement defined by W = 0 out of the equivalence class.
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The reason for choosing the constant term as in equation (3.51) is

that then the Gauss reciprocity formula generalizes to arbitrary generalized

quadratic forms (see pg 70 in Hopkins and Singer [MH02]). Hence partial

information (mod 8) about the signature of B is retained in the same formula

1√
|D|

∑
x∈D

exp (2πiqi(x)) = exp (2πiC/8) (3.54)

Obviously different qi’s in the same equivalence class give the same number on

the LHS, hence define the same C mod 8.

The quantization map is surjective

The “lattice quantization” map in equation (3.53) is surjective. However the

map is not injective (in fact infinitely-many classical theories will map onto a

given quantum theory).

Consider an arbitrary finite abelian group D equipped with an equiv-

alence class of nondegenerate generalized quadratic forms [q]. Use the Gauss

sum formula (equation (3.54)) to define a “signature” integer C mod 8. The

term “signature” doesn’t technically make sense because there is no classical

lattice here, but we use it anyway. C mod 8 is determined by D and [q], so it

is not extra information.

However, we require not just an integer mod 8, but rather an integer

mod 24. So suppose that, in addition, we are given an integer c mod 24 such

that c ≡ C mod 8. Obviously for a given C there are only 3 possibilities for

such a c.

Then we can ask the following question: does the trio of data (D, [q], c)
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lift to a classical lattice? 12 The answer is yes. We shall start with the simpler

case (which is the only one relevant for the remainder of this paper).

We know that an even lattice (Λ, B) maps under equation (3.19) to a

trio (D, q, c) where q is a pure nondegenerate quadratic form and c is an integer

mod 24 that satisfies the Gauss sum in equation (3.54).

On the other hand, given such a trio { (D, q, c) where D is a finite

abelian group, q is a nondegenerate pure quadratic form, and c is an integer

mod 24 that satisfies the Gauss formula } can this be lifted to an even lattice

(Λ, B)? The following result answers this positively (corollary 1.10.2 pg 117

in [Nik80]):

Corollary 3.55. (V.V. Nikulin, 1979) Let r+ ≥ 0 and r− ≥ 0 be integers.

Consider a finite abelian group D equipped with a Q/Z-valued nondegenerate

pure quadratic form q. Define the “signature” mod 8 of q by the Gauss sum

formula in equation (3.54). Then if the quantity r+ + r− is sufficiently large

and if r+ − r− ≡ sign q mod 8 then there exists an even lattice (Λ, B) such

that

1. (D, q) is the discriminant group and quadratic form from (Λ, B)

2. (Λ, B) has r+ positive eigenvalues and r− negative eigenvalues

Nikulin’s original statement provides estimates on “sufficiently large”,

but we do not need them. Note that the modifier “pure” is left out of Nikulin’s

version because in [Nik80] all quadratic forms are defined to be pure.

As can be seen, a given trio lifts to infinitely-many even lattices. We

conclude that the even quantization map in equation (3.19) is surjective but

12We note that [q] determines a bilinear form b, hence we could write the data as a quartet
(D, b, [q], c)).
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not injective.

Now consider a trio { (D, [q], c) where D is a finite abelian group, [q]

is an equivalence class of nondegenerate generalized quadratic forms, and c

is an integer mod 24 that satisfies the Gauss formula }. Can this be lifted

to a (generically odd) lattice? Consider Nikulin’s results about odd lattices

(Corollary 1.16.6 [Nik80]):

Corollary 3.56. (V.V. Nikulin, 1979) Let r+ ≥ 0 and r− ≥ 0 be arbitrary

positive integers. Consider a finite abelian group D equipped with a Q/Z-

valued nondegenerate symmetric bilinear form b. Then if the quantity r+ + r−

is sufficiently large then there exists a (possibly odd) lattice (Λ, B) such that

1. (D, b) is the discriminant group and bilinear form from (Λ, B)

2. (Λ, B) has r+ positive eigenvalues and r− negative eigenvalues

Again what we present here is weaker than the corollary presented in

the original work.

This corollary shows that the data (D, b, c) lifts to a (possibly odd)

lattice (Λ, B) where signature B = C = r+ − r− ≡ c mod 24 for arbitrary

integer c mod 24. Note the appearance of b rather than [q] in the trio here.

This indicates that the bilinear form lifts, but we have still not seen that [q]

lifts ([q] lifts means that it is derived from the Wu class [W ] on the lift lattice).

We have not seen the following extension of Nikulin’s theorem explicitly stated

and proven in the literature, hence we prove it here for completeness:

Proposition 3.57. The trio (D, [q], c) lifts to a (possibly odd) lattice.

Proof. To see that [q] lifts as well let us compare it to [qW ] where [W ] is the

Wu class of the lifted lattice (Λ, B). We need to show that [q] = [qW ] so pick
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a Wu representative W and consider the induced generalized quadratic form

qW (x) ≡ 1

2
B(X,X −W ) +

1

8
B(W,W ) mod 1 (3.58)

where X ∈ Λ∗ is an arbitrary lift of x ∈ D. Pick one of the quadratic forms q

out of the equivalence class [q] as well. We want to compare q and qW (their

induced bilinear forms b are at least the same because qW is constructed from

a lift of b. Also we have already seen that C ≡ c mod 24 by construction of the

lift so q and qW satisfy the Gauss sum formula for the same value of C mod 8).

It is easier to compare them if we strip off the constants, so define

q̃(x) = q(x)− q(0) and ˜qW (x) = qW (x)− qW (0) = 1
2
B(X,X −W ). Clearly

q̃(x+ y)− q̃(x)− q̃(y) = (3.59)

[q(x+ y)− q(0)]− [q(x)− q(0)]− [q(y)− q(0)] = (3.60)

q(x+ y)− q(x)− q(y) + q(0) = b(x, y) (3.61)

so the bilinear form is not changed when passing from q to q̃. A similar

statement holds for qW to ˜qW .

Since q̃ and ˜qW refine the same bilinear form b they differ by a linear

term. This can be seen from

[q̃ − ˜qW ](x+ y)− [q̃ − ˜qW ](x)− [q̃ − ˜qW ](y) = [b− b](x, y) = 0 (3.62)

which shows that [q̃ − ˜qW ] is linear. But b is nondegenerate so any linear

function is of the form b(x, δ) for some fixed δ ∈ D. So

[q̃ − ˜qW ](x) = b(x, δ) = B(X,∆) mod 1 (3.63)
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for some fixed δ ∈ D (∆ ∈ Λ∗ is an arbitrary lift of δ ∈ D). Therefore

q̃(x) = ˜qW +B(X,∆) mod 1 (3.64)

=
1

2
B(X,X −W ) +B(X,∆) mod 1 (3.65)

=
1

2
B(X,X − (W − 2∆)) mod 1 (3.66)

The last line is of the form ˜qW ′ where W ′ = W − 2∆ is just another choice of

representative for the same Wu class [W ].

So we see that q̃ = ˜qW ′ . Now all that we need to do is put the constants

back in. We need to check if

q(x) = q̃(x) + q(0) (3.67)

equals

qW ′(x) = ˜qW ′(x) +
1

8
B(W ′,W ′) mod 1 (3.68)

=
1

2
B(X,X −W ′) +

1

8
B(W ′,W ′) mod 1 (3.69)

Now it is clear that since qW ′ is in the same equivalence class as qW

(since W and W ′ are just different representatives for the same Wu class) they

both satisfy the Gauss sum (equation (3.54)) for the same value of C mod 8.

On the other hand we already mentioned that q and qW also satisfy the

Gauss sum for the same value of C mod 8 (by the lift construction). Hence

they all satisfy the Gauss sum for the same value of C mod 8. Now the Gauss

sum can be viewed as a constraint that determines the constants (because

when we stripped off the constants we showed that q̃ equals ˜qW ′). In this case
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we have no choice but to conclude q(0) = 1
8
B(W ′,W ′) mod 1.

Summarizing, q = qW ′ for some Wu representative W ′, hence the equiv-

alence class of quadratic refinements [q] actually lifts through the Nikulin con-

struction (to [qW ]). We conclude that the trio (D, [q], c) lifts.

3.3 Canonical quantization of Belov and Moore

In the last section we discussed the quantization of lattices. We use the term

quantization since the resulting trio of data (D, q, c) encodes the quantization

of toral (spin or non-spin) Chern-Simons gauge theory. In this section we

transcribe the relevant Hilbert space structure that arises from the wavefunc-

tions constructed in [BM05] and recall that this provides a (non-extended) 2-d

modular functor (see chapter (2)).

Hilbert space preliminaries

First it is useful to mention some preliminaries before reproducing the ac-

tion of the mapping class group for closed surfaces 13 on the Hilbert space of

wavefunctions as described in section 5.6 of [BM05].

Following Belov and Moore we avoid the special considerations that

must be taken into account when the surface Σ is the Riemann sphere (see

chapter (2)) and skip to the case where Σ is a closed oriented Riemann surface

with genus g ≥ 1.

Let us pick a canonical basis for the first homology group H1(Σ,Z), i.e.

13Note that Belov and Moore study only fixed vortices (marked arcs, or colored boundary
circles). The braiding and twisting of such quasiparticles must also be described to specify
an extended 2-d modular functor (see chapter (2)). Hence we restrict our attention to closed
surfaces.
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an ordered set of loops {ai, bi}i=1,...,g in Σ such that the oriented intersection

numbers are given by

I(ai, bj) = −I(bj, ai) = δij (3.70)

I(ai, aj) = 0 (3.71)

I(bi, bj) = 0 (3.72)

Such a basis always exists (but is not unique) for any closed Riemann surface

Σ. 14 Clearly this intersection matrix defines a symplectic inner product on

H1(Σ,Z).

Orientation-preserving diffeomorphisms map loops to loops and pre-

serve intersection numbers, hence on the canonical basis {ai, bi} the mapping

class group MCG(Σ) acts via invertible integer-valued matrices that leave the

symplectic inner product matrix unchanged. Such matrices are elements of the

(integral) symplectic group Sp(2g,Z). So we have a map

MCG(Σ)→ Sp(2g,Z) (3.73)

In general this map is surjective and the kernel is the Torelli group. It is

claimed in [BM05] that for the abelian theories considered there the Torelli

group acts trivially. In other words the mapping class group action on the

wavefunctions is encoded entirely in Sp(2g,Z) for abelian theories.

Since H1(Σ,Z) is 2g-dimensional let us write the choice of canonical

14This choice of canonical basis is a variant of the extra structure that is required on Σ
in order to define an anomaly-free TQFT. See chapter (2). Also we shall not bother to
distinguish between homology classes and representative loops.
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basis using the convention

a1 =



1

0
...

0

0
...

0



· · · ag =



0

0
...

1

0
...

0



b1 =



0

0
...

0

1
...

0



· · · bg =



0

0
...

0

0
...

1



(3.74)

The symplectic group is then generated by matrices of the form

A 0

0 A−1,t

 , A ∈ GL(g,Z), i.e. det(A) = ±1 (3.75)

1g B

0 1g

 , B is any symmetric integral g × g matrix

 0 −1g
1g 0


As usual in genus g = 1 these matrices are 1, t, and s - the familiar generators

of the modular group SL(2,Z) ∼= Sp(2,Z)

1 =

1 0

0 1

 t =

1 1

0 1

 s =

0 −1

1 0

 (3.76)

The chosen canonical basis {ai, bi}i∈1,...,g for H1(Σ,Z) induces a dual

basis {αi, βi}i∈1,...,g of integral 1-forms H1(Σ,Z). This is useful since (chap-

ter (2)) the Kähler quantization procedure has as classical configuration space
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the moduli space of flat connections M (which are essentially 1-forms). The

Hilbert space is comprised of wavefunctions of the form Ψ(1-forms).

Using the dual basis {αi, βi}i∈1,...,g we can decompose any 1-form ω 15

into 16

ω = ωi1αi + ωi2βi (3.77)

for ωi1, ω
i
2 ∈ R. The transformations in equation (3.75) are transposed when

acting on the dual basis {αi, βi}i∈1,...,g

At 0

0 A−1

 , A ∈ GL(g,Z), i.e. det(A) = ±1 (3.78)

1g 0

Bt 1g

 , B is any symmetric integral g × g matrix (3.79)

 0 1g

−1g 0

 (3.80)

(obviously Bt = B). The induced action on any wavefunction is given by

1. A transform:

(MA ·Ψ)(ω) := Ψ(MA · ω) = Ψ(At · ω1, A
−1 · ω2) (3.81)

2. B transform:

(MB ·Ψ)(ω) := Ψ(MB · ω) = Ψ(ω1, ω2 +B · ω1) (3.82)

15The universal coefficient theorem tells us that H1(Σ,R) ∼= H1(Σ,Z)⊗ R.
16Warning: our notation diverges from that in [BM05]. We use ω1 and ω2 instead of a1

and a2 to avoid notation collisions. Our indices are also placed differently.
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3. S transform:

(MS ·Ψ)(ω) := Ψ(MS · ω) = Ψ(ω2,−ω1) (3.83)

Now let us discuss a few further constructions utilized in [BM05] to write

down a basis of wavefunctions (and to understand the above group action in

terms of this basis).

Dependence on spin structure and Wu class

The basis of wavefunctions depends on the choice of spin structure and choice

of Wu class (see below). First, it is a fact that any compact oriented 3-manifold

X admits at least one spin structure [Sti00]. This is equivalent to saying that

the first and second Stiefel-Whitney classes (which are valued in H1(X, 1
2
Z/Z))

for the tangent bundle vanish, i.e. w1(TX) = w2(TX) = 0 ∈ H1(X, 1
2
Z/Z) (in

fact TX is trivializable).

The group H1(X, 1
2
Z/Z) itself need not be zero, however. In fact

H1(Σ, 1
2
Z/Z) enumerates the different possible spin structures on X. 17 Ex-

plicitly for a manifold of the form X = Σ× I (as in the current Hamiltonian

formulation) we have that H1(X, 1
2
Z/Z) ∼= H1(Σ, 1

2
Z/Z) since X deformation

retracts onto Σ. But by the universal coefficient theorem we see that

H1(Σ,
1

2
Z/Z) ∼= H1(Σ,Z)⊗ 1

2
Z/Z (3.84)

17The space of spin structures is an H1(Σ, 1
2Z/Z)-torsor. However given our choice of

canonical homology basis {ai, bi}i=1,...,g a preferred spin structure is determined (see pg.
27 of [BM05]). We identify this with 0 ∈ H1(X, 1

2Z/Z) (i.e. we have fixed a preferred
origin for the spin structures, and hence the space of spin structures can be identified with
H1(Σ, 1

2Z/Z) itself).
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Manifestly this has 22g elements that can be written in terms of the dual basis

{αi, βi}i∈1,...,g (but with 1
2
Z/Z coefficients).

In light of this let us encode a fixed spin structure by specifying a

set of coefficients ([ε1], [ε2]) ∈ (1
2
Z/Z)2g (i.e. a spin structure is given by

[ε1] ·α+ [ε2] · β ∈ H1(Σ, 1
2
Z/Z)). For this fixed spin structure the main idea is

to define a Hilbert space H([ε1],[ε2]) of wavefunctions using theta functions.

The spin structure ([ε1], [ε2]) is not the only piece of data needed to

write down a Hilbert space. Recall from section (3.2) that the “quantization”

of a classical lattice is encoded in the data

(D, [qW ], c) (3.85)

where D is a finite abelian group, [qW ] : D → Q/Z is an equivalence class

of quadratic forms on D constructed from the Wu class [W ] ∈ Λ∗/2Λ∗ of

the classical lattice, and c is an integer mod 24 that is essentially a choice of

cube root of the Gauss reciprocity formula. The content of the Belov-Moore

construction is that the Hilbert space (and action of the mapping class group)

is determined by this data alone. So we add additional decoration to the above

Hilbert space

H([ε1],[ε2]),(D,[qW ],c) (3.86)

or, more compactly

H([ε1],[ε2]),[W ] (3.87)

H([ε1],[ε2]),[W ] can only be explicitly written down by picking a represen-

tative (ε1, ε2) ∈ (1
2
Z)2g of ([ε1], [ε2]). Likewise, we are forced to pick an explicit

representative W ∈ Λ∗ from the Wu class [W ]. Unfortunately the basis of
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wavefunctions does naively depend on these representative choices, however

different bases constructed from different representatives are gauge equivalent

by an explicit set of gauge transformations (which we list below). Hence there

is no loss in generality when picking representatives (ε1, ε2) and W :

H(ε1,ε2),W (3.88)

As discussed in [BM05] there are precisely |Dg| basis wavefunctions in H(ε1,ε2),W

enumerated by γ ∈ Dg (i.e. there is a copy of the discriminant group D for

each canonical basis loop bi where i ∈ 1, . . . , g):

Ψγ,(ε1,ε2),W (1-forms) (3.89)

The transformation laws that map one basis of wavefunctions deter-

mined by a choice of representative (ε1, ε2),W to another choice are derived

at the end of section 5.3 in [BM05] (and more succinctly in equation 5.42 in

[BM05]). Recall that we are not considering vortices here. 18 The dependence

on W is shown in [BM05], but we shall not need it since the Wu representa-

tive is unaltered by the action of the symplectic group. The dependence on

representative (ε1, ε2), however, is necessary in what follows. We have

Ψγ,(ε1+n1,ε2+n2),W =

e8πiqW (0)[n1·n2+ε1·n2−ε2n1]+2πini2[qW (−γi)−qW (γi)]Ψγ+n1⊗W,(ε1,ε2),W (3.90)

where W is the projection of W into the discriminant group D. The repeated

index i = 1, . . . , g is summed over, as usual (manifestly (n1, n2) ∈ Z2g).

18In the language of [BM05] set c1 = c2 = 0.

76



The results mentioned in the next subsection show that the action of

the mapping class group on the theta functions (as formally described in equa-

tions (3.81), (3.82), (3.83)) does not preserve the spin structure. In light of

this Belov and Moore proposed that the full Hilbert space for the theory must

be written as a direct sum over the separate spin structures:

H[W ] =
⊕

[ε1],[ε2]∈( 1
2
Z/Z)⊗g

H[ε1],[ε2],[W ] (3.91)

Action of the mapping class group on theta functions

Using the properties of theta functions (see [BM05]) it is possible to cast the

action of the mapping class group (discussed in equations (3.81), (3.82), (3.83))

into new expressions (we add the extra decorations to the wavefunctions from

here):

1. A transform:

(MA ·Ψγ,(ε1,ε2),W )(ω) := Ψγ,(ε1,ε2),W (MA · ω) =

Ψγ,(ε1,ε2),W (At · ω1, A
−1 · ω2) = ΨAtγ,(Atε1,A−1ε2),W (ω1, ω2) (3.92)

2. B transform:

(MB ·Ψγ,(ε1,ε2),W )(ω) := Ψγ,(ε1,ε2),W (MB · ω) =

Ψγ,(ε1,ε2),W (ω1, ω2 +B · ω1) = e2πiφ(B)c/24e4πiεi1B
iiqW (0)−2πiBii[qW (γi)−qW (0)]

× e−2πiΣi<jB
ijb(γi,γj)Ψγ,(ε1,ε2−Bε1− 1

2
diag(B)),W (ω1, ω2) (3.93)

77



3. S transform:

(MS ·Ψγ,(ε1,ε2),W )(ω) := Ψγ,(ε1,ε2),W (MS · ω) =

Ψγ,(ε1,ε2),W (ω2,−ω1) = |D|−g/2
∑
γ′∈Dg

e2πib(γi,γ
′
i)Ψγ′,(−ε2,ε1),W (ω1, ω2) (3.94)

Here b(·, ·) : D → Q/Z is the bilinear form determined by qW and i, j ∈ 1, . . . , g

are summed over when the indices are repeated (except the i in 2πi means

2π
√
−1 of course). The quantity φ(B) is an integer determined from the

matrix B (see [BM05]).

We will always choose the representative (ε1, ε2) ∈ (1
2
Z)2g such that ev-

ery element εi1, ε
i
2 is either 0 or 1

2
(if the above action on the basis wavefunctions

destroys this choice then we can use equation (3.90) to put each element back

into this form).

Even (non-spin) theories

For the case of an even (non-spin) topological quantum field theory (see sec-

tion (3.2)) we can always make the special choice for Wu representative W = 0

(the quadratic form qW is then pure). In this case the spin structure ([ε1], [ε2])

is irrelevant. The basis wavefunctions are written in terms of the theta func-

tions up to non-trivial normalization factors (see page 28 in [BM05] and the

other references cited there for greater detail):

Ψγ,(ε1,ε2),W (ω1, ω2) ∼ Θε1⊗W,ε2⊗W
Λ+γ (ω1, ω2) (3.95)
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Clearly if we set W = 0 then different spin structures ([ε1], [ε2]) produce the

same wavefunctions. The full Hilbert space is not a direct sum over spin struc-

tures as in equation (3.91). Instead there are only |Dg| basis wavefunctions,

and the action of the symplectic group reduces to

1. A transform (even theory):

(MA ·Ψγ)(ω) = ΨAtγ(ω) (3.96)

2. B transform (even theory):

(MB ·Ψγ)(ω) = e2πiφ(B)c/24e−2πiBiiqW (γi)e−2πiΣi<jB
ijb(γi,γj)Ψγ(ω) (3.97)

3. S transform (even theory):

(MS ·Ψγ)(ω) = |D|−g/2
∑
γ′∈Dg

e2πib(γi,γ
′
i)Ψγ′(ω) (3.98)

An example in genus 1

In genus 1 the above symplectic group action on the Hilbert space of wave-

functions can be made more explicit. We take this opportunity to correct some

slight calculational errors in subsection 5.6.1 of [BM05] for the benefit of the

reader.

Denote the matrix elements of an operator O acting from Hε1,ε2,W to

Hε′1,ε
′
2,W

by the notation Oγ
γ′

[
2ε1 2ε2
2ε′1 2ε′2

]
. 19 Then in genus 1 the t and s symplectic

matrices induce operators T and S given by the following matrix elements

19Beware: our primed and unprimed indices are exactly opposite to that in [BM05]. We
seek to remain consistent with our previous notation.
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(everything not listed is zero):

T γγ′
[

0 0
0 1

]
= e2πic/24−2πi[qW (−γ)−qW (0)]δγγ′ (3.99)

T γγ′
[

0 1
0 0

]
= e2πic/24−2πi[qW (γ)−qW (0)]δγγ′ (3.100)

T γγ′
[

1 0
1 0

]
= T γγ′

[
1 1
1 1

]
= e2πic/24−2πiqW (−γ)δγγ′ (3.101)

The S matrices are

Sγγ′
[

0 0
0 0

]
= Sγγ′

[
1 0
0 1

]
= |D|−1/2e2πib(γ,γ′) (3.102)

Sγγ′
[

0 1
1 0

]
= |D|−1/2e2πib(γ,γ′+W ) (3.103)

Sγγ′
[

1 1
1 1

]
= |D|−1/2e2πib(γ,γ′+W )+4πiqW (0) (3.104)

For even theories the spin labelling collapses since set W = 0. Since qW

is then pure we have qW (0) = 0 and qW (−γ) = qW (γ). The resulting T and S

operators are much simpler

T γγ′ = e2πic/24−2πiqW (γ)δγγ′ (3.105)

Sγγ′ = |D|−1/2e2πib(γ,γ′) (3.106)
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Chapter 4

Modular Tensor Categories

4.1 Introduction

The goal of this chapter is to provide a brief sketch of modular tensor cat-

egories to lay a foundation for future chapters. Modular tensor categories

(MTCs) grew somewhat simultaneously out of the study of conformal field

theory by Moore and Seiberg [MS89] and quantum groups by Lusztig, Jimbo,

Reshetikhin and Turaev, and others (see the references in [RT90], [RT91], and

[KM91] for a more complete listing).

For the majority of this chapter we follow [Tur94] and [BK00] (borrow-

ing conventions and notation from both). Our arrows will be in exactly the

opposite direction to those in [Tur94]. We also follow the definition of the S-

matrix in [BK00]. We have also found the unpublished notes of Boyarchenko

[Boy] useful.

Both books [Tur94] and [BK00] consider in detail strict ribbon cate-

gories. This is not sufficient for our purposes and hence we shall consider
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ribbon categories that are not necessarily strict. However, since strict cate-

gories are easier to understand we consider them first in all of the definitions

below.

4.2 Monoidal categories

Strict monoidal categories

Definition 4.1. A strict monoidal category is a category V equipped with

a covariant bifunctor 1 ⊗ : V × V → V and a distinguished object 1 such that

the following two identities hold:

1. Strict identity:

U ⊗ 1 = 1⊗ U = U (4.4)

2. Strict associativity:

(U ⊗ V )⊗W = U ⊗ (V ⊗W ) (4.5)

Example 4.6. A simple example of a strict monoidal category is the category

VectC of complex vector spaces under the usual tensor product. Here the unit

object is 1 = C.

1By covariant bifunctor we mean that for any two objects V,W ∈ Ob(V) there is an
object V ⊗W ∈ Ob(V), and for any two morphisms f : V → V ′ and g : W → W ′ there
is a morphism f ⊗ g : V ⊗ W → V ′ ⊗ W ′. Functoriality means that given morphisms
f ′ : V ′ → V ′′, g′ : W ′ →W ′′ the following identities are required to be satisfied:

(f ′ ◦ f)⊗ (g′ ◦ g) = (f ′ ⊗ g′) ◦ (f ⊗ g) (4.2)

idV ⊗ idW = idV⊗W (4.3)
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=:

Figure 4.1: A (k = 5, l = 2)-ribbon graph. The diagrammatic presentation is
depicted on the right.

Example 4.7. Now we construct a more complicated strict monoidal category

RibI , called the category of colored ribbon graphs. Here I is some auxilliary

set of labels (“colors”).

First we require some preliminary definitions. We will be rather infor-

mal here since the following definition is written carefully in [Tur94]:

Definition 4.8. A (k, l)-ribbon graph Ω is an oriented surface in R3 up to

isotopy. The surface is constructed out of elementary pieces (see figure (4.1)):

1. oriented ribbons

2. coupons

3. oriented annuli

The coupons have two distinguished bases (“in” and “out”) on which the

ribbons can terminate. Any ribbon end that terminates on a coupon is not
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allowed to slide from the “in” side to the “out” side (or vica versa) under

isotopy.

Furthermore, we require that for a (k, l)-ribbon graph there are k ≥ 0

free ribbon ends that are marked as “inputs”, and likewise there are l ≥ 0

free ribbon ends that are marked as “outputs”. In fact it is always possible to

perform an isotopy to put the ribbon graph Ω into a standard drawing position

(see figure (4.1)), i.e.:

1. The k “input” free ribbon ends are at the bottom. They are ordered from

left to right (the ordering can be changed by braiding the free ribbon

ends over/under each another).

2. The l “output” free ribbon ends are at the top. They are ordered from

left to right.

3. The graph is “face up” (determined by the orientation of Ω) except

in finitely-many localized places where the ribbons are twisted (see fig-

ure (4.2)).

4. The graph sits entirely in the plane of the drawing except at a finite

number of overcrossings, undercrossings, and twists (see figure (4.3)).

Because of the standard drawing position it is clear that we can represent

any ribbon graph by a ribbon diagram, i.e. a diagram where the oriented

ribbons are replaced by their oriented cores. The ribbons can be recovered by

using the blackboard framing. See the right side of figure (4.1).

Now let I be a set of labels (colors). We define a colored (k, l)-ribbon

graph as a (k, l)-ribbon graph where each ribbon and each annulus is labeled

by some element in I (we do not color the coupons yet).
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−1

∼=

∼=

=:

=:

Figure 4.2: On the top is depicted a right twist (a (1, 1)-ribbon graph). On
the bottom is depicted a left twist (a (1, 1)-ribbon graph). The diagrammatic
presentation is depicted on the right for each.

=:

=:

Figure 4.3: On the top is depicted a right braid (a (2, 2)-ribbon graph). On
the bottom is depicted a left braid (a (2, 2)-ribbon graph). The diagrammatic
presentation is depicted on the right for each.
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i

i

i

i

i′

i′

i

i

i′

i′

idi :=⊗

Figure 4.4: The identity morphism idi : [[i,+1]]→ [[i,+1]] in RibI is depicted
on the left. The tensor product of morphisms in RibI (in this case two identity
morphisms) is depicted on the right.

Definition 4.9. Define a strict monoidal category RibI as follows:

1. The objects are ordered lists [[i1,±1], [i2,±1], . . .] where i1, i2, . . . ∈ I.

The unit object 1 is the empty list [].

2. Given objects [[i1,±1], [i2,±1], . . . , [ik,±1]] and [[i′1,±1], [i′2,±1], . . . , [i′l,±1]]

a morphism between them is a colored (k, l)-ribbon graph such that the

k “input” ribbons are labeled (in order) by i1, . . . , ik and each ribbon is

directed up for +1 and directed down for −1. Similary the l “output”

ribbons are labeled by i′1, . . . , i
′
l where they are directed up for +1 and

down for −1. It is obvious that these morphisms can be composed by

stacking colored ribbon graphs on top of each other.

RibI is a strict monoidal category since any two ordered lists can be concate-

nated

[[i1,±1], [i2,±1], . . . , [ik,±1]]⊗ [[i′1,±1], [i′2,±1], . . . , [i′l,±1]] =

[[i1,±1], [i2,±1], . . . , [ik,±1], [i′1,±1], [i′2,±1], . . . , [i′l,±1]] (4.10)

(this defines ⊗ on the objects) and ribbon graphs can be placed adjacent
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to each other (this defines ⊗ on the morphisms - see e.g. the right side of

figure (4.4)).

(Non-strict) monoidal categories

We now consider monoidal categories that may not be strict.

Definition 4.11. A monoidal category is a category V equipped with a

covariant bifunctor ⊗ : V ×V → V and a distinguished object 1. Furthermore

we require a family of natural isomorphisms

{aU,V,W : (U ⊗ V )⊗W → U ⊗ (V ⊗W )} (4.12)

{rU : U ⊗ 1→ U} (4.13)

{lU : 1⊗ U → U} (4.14)

such that the following diagrams commute:

Pentagon diagram:

(U ⊗ V )⊗ (W ⊗X)

aU,V,W⊗X

$$JJJJJJJJJJJJJJJJJJJJ

((U ⊗ V )⊗W )⊗X

aU⊗V,W,X

::tttttttttttttttttttt

aU,V,W⊗idX

��

U ⊗ (V ⊗ (W ⊗X))

(U ⊗ (V ⊗W ))⊗X
aU,V⊗W,X //U ⊗ ((V ⊗W )⊗X)

idU⊗aV,W,X

OO

(4.15)
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Triangle diagram:

(U ⊗ 1)⊗ V
aU,1,V //

rU⊗idV

��99999999999999 U ⊗ (1⊗ V )

idU⊗lU

����������������

U ⊗ V

(4.16)

The MacLane Coherence Theorem [Mac97] states that if these commutative

diagrams are satisfied then any diagram involving a, r, l is commutative, i.e.:

1. given any ordered listA of objects that are tensored together and grouped

with parenthesis,

2. and given the same ordered list A′ but with different parenthesis grouping

(and possibly with unit objects 1 appearing/not appearing in different

places),

3. then any two ways of getting from A to A′ using any combination of the

maps a, r, l are the same.

This implies in particular that any monoidal category is monoidal equivalent

(see chapter (5)) to a strict monoidal category.

Example 4.17. There is a straightforward “non-associative” generalization of

colored (k, l)-ribbon graphs constructed by Bar-Natan in [BN93], and it is not

difficult to construct the corresponding (non-strict) monoidal category RibNS
I .

For example the objects are ordered lists with parenthesis [([i1,±1], [i2,±1]), . . .],

and the morphisms are non-associative colored (k, l)-ribbon graphs.
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4.3 Braided monoidal categories

In this section we define braided monoidal categories. The natural setting

for the examples in this paper are braided (non-strict) monoidal categories.

However, we discuss braided strict monoidal categories first since they are

easier to understand.

Braided strict monoidal categories

Definition 4.18. A braided strict monoidal category is a strict monoidal

category equipped with a family of natural braiding isomorphisms

{cU,V : U ⊗ V → V ⊗ U} (4.19)

The braiding isomorphisms represent a weak form of commutativity. Note

that it is not usually true that cV,U ◦cU,V = idU⊗V . If this condition is satisfied

then the category is called symmetric (we are interested in non-symmetric

categories).

The braiding isomorphisms are required to satisfy the following hexagon

relations :

A⊗ (B ⊗ C)
cA,B⊗C +3

id

yy

(B ⊗ C)⊗ A

(A⊗B)⊗ C
cA,B⊗idC

%%KKKKKKKKKKKKKKKKK B ⊗ (C ⊗ A)

id

ee

(B ⊗ A)⊗ C id //B ⊗ (A⊗ C)

idB⊗cA,C

99sssssssssssssssss

(4.20)
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(U ⊗ V )⊗W
cU⊗V,W +3

id

yy

W ⊗ (U ⊗ V )

U ⊗ (V ⊗W )

idU⊗cV,W

%%LLLLLLLLLLLLLLLLLL (W ⊗ U)⊗ V

id

ee

U ⊗ (W ⊗ V ) id //(U ⊗W )⊗ V

cU,W⊗idV

99rrrrrrrrrrrrrrrrrr

(4.21)

It is easy to check that RibI is a braided strict monoidal category (use

the braiding graphs as in figure (4.3)). The hexagon relations have a very

simple geometric interpretation in RibI - it is instructive for the reader to

draw them out for himself/herself.

(Non-strict) braided monoidal categories

We now consider braided monoidal categories that may not be strict.

Definition 4.22. A braided monoidal category is a monoidal category

equipped with a family of natural braiding isomorphisms

{cU,V : U ⊗ V → V ⊗ U} (4.23)

In contrast to the strict case the braiding isomorphisms are required to
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satisfy more elaborate hexagon relations :

A⊗ (B ⊗ C)
cA,B⊗C +3

a−1
A,B,C

yysssssssssssssssss
(B ⊗ C)⊗ A

(A⊗B)⊗ C
cA,B⊗idC

%%KKKKKKKKKKKKKKKKK B ⊗ (C ⊗ A)

a−1
B,C,A

eeKKKKKKKKKKKKKKKKK

(B ⊗ A)⊗ C
aB,A,C //B ⊗ (A⊗ C)

idB⊗cA,C

99sssssssssssssssss

(4.24)

(U ⊗ V )⊗W
cU⊗V,W +3

aU,V,W

yyrrrrrrrrrrrrrrrrrr
W ⊗ (U ⊗ V )

U ⊗ (V ⊗W )

idU⊗cV,W

%%LLLLLLLLLLLLLLLLLL (W ⊗ U)⊗ V

aW,U,V

eeLLLLLLLLLLLLLLLLLL

U ⊗ (W ⊗ V )
a−1
U,W,V //(U ⊗W )⊗ V

cU,W⊗idV

99rrrrrrrrrrrrrrrrrr

(4.25)

It is easy to check that RibNS
I is a (non-strict) braided monoidal category

(RibNS
I is only slightly more elaborate than RibI).

4.4 Balanced categories

In this section we define categories with twisting (inspired by ribbon graphs

as in figure (4.2)). The definition is identical in both the strict and non-strict

cases.
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Definition 4.26. A (strict) balanced category is a braided (strict) monoidal

category equipped with a family of natural isomorphisms (twists):

{θU : U → U} (4.27)

such that the following balancing diagram commutes:

U ⊗ V
θU⊗V //

θU⊗θV

��

U ⊗ V

U ⊗ V cU,V
//V ⊗ U

cV,U

OO (4.28)

This can be written as a formula for convenience:

θU⊗V = cV⊗U ◦ cU⊗V ◦ (θU ⊗ θV ) (4.29)

Since the inspiration for this construction comes from ribbon graphs it

is not surprising that RibI is a strict balanced category, and similarly RibNS
I

is a (non-strict) balanced category. The balancing condition has a simple

geometric interpretation in RibI - it is highly recommended for the reader to

draw this out independently.

4.5 Right-Rigid monoidal categories

It is possible to rewind the discussion back to monoidal categories and consider

a separate line of development (independent of braided monoidal and balanced

categories). In this section we define a notion of duality. This is meant to

92



mimic duality in the category of vector spaces, however we note that there are

many aspects of vector spaces that do not necessarily have analogues in this

more general theory (for example there is no canonical isomorphism V → V ∗∗).

2

Right-rigid strict monoidal categories

Definition 4.30. A right-rigid strict monoidal category V is a strict

monoidal category such that for each object V ∈ Ob(V) there is a distinguished

right dual object V ∗ and morphisms (not necessarily isomorphisms)

bV : 1→ V ⊗ V ∗ (4.31)

dV : V ∗ ⊗ V → 1

These are birth and death morphisms. In addition we require that the following

maps must be equal to idV and idV ∗ , respectively:

V
bV ⊗idV−−−−→ V ⊗ V ∗ ⊗ V idV ⊗dV−−−−→ V (4.32)

V ∗
idV ∗⊗bV−−−−−→ V ∗ ⊗ V ⊗ V ∗ dV ⊗idV ∗−−−−−→ V ∗

2The connoiseur might be interested in following this branch further. Left duals can be
defined similarly to right duals, and a right-left rigid monoidal category is simply called
a rigid monoidal category. A tensor category has the simultaneous structure of a rigid
monoidal category and an abelian category that has been enriched over finite-dimensional
vector spaces (i.e. the Hom spaces are better than abelian groups - they are finite-
dimensional C-vector spaces; any characteristic 0 field k can be substituted for C). The
abelian structure and the monoidal structure must be compatible in the sense that ⊗ dis-
tributes over ⊕. In addition we require Hom(1, 1) ∼= C.

A finite tensor category is a tensor category such that there are finitely-many simple
objects (see below), each object can be decomposed as a finite-length list of simple objects,
and each simple object admits a projective cover. If a finite tensor category is semisimple
(stronger than the projective cover condition) then the category is a fusion category.
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i

i

Figure 4.5: The birth bi : []→ [[i,+1], [i,−1]] and death di : [[i,−1], [i,+1]]→
[] morphisms for the color i in the category RibI .

RibI is a right-rigid strict monoidal category. For a given object [[i1,±1], [i2,±1], . . . , [ik,±1]]

the dual object is [[i1,∓1], [i2,∓1], . . . , [ik,∓1]] (every +1 is changed to a −1

and vica versa). The birth and death morphisms are depicted in figure (4.5).

The conditions in equation (4.32) have simple geometric interpretations in

RibI and again it is in the interest of the reader to sketch these out.

(Non-strict) right-rigid monoidal categories

Definition 4.33. A right-rigid monoidal category V is a monoidal cate-

gory such that for each object V ∈ Ob(V) there is a distinguished right dual

object V ∗ and morphisms (not necessarily isomorphisms)

bV : 1→ V ⊗ V ∗ (4.34)

dV : V ∗ ⊗ V → 1
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These are birth and death morphisms. Similar to the conditions above we

require that the following maps must be equal to idV and idV ∗ , respectively:

V
l−1
V−−→ 1⊗ V bV ⊗idV−−−−→ (V ⊗ V ∗)⊗ V

aV,V ∗,V−−−−→

V ⊗ (V ∗ ⊗ V )
idV ⊗dV−−−−→ V ⊗ 1 rV−→ V (4.35)

V ∗
r−1
V ∗−−→ V ∗ ⊗ 1 idV ∗⊗bV−−−−−→ V ∗ ⊗ (V ⊗ V ∗)

a−1
V ∗,V,V ∗−−−−−→

(V ∗ ⊗ V )⊗ V ∗ dV ⊗idV ∗−−−−−→ 1⊗ V ∗ lV ∗−−→ V ∗

The only difference is that the associativity maps appear.

In a similar fashion to RibI it is easy to show that RibNS
I is a (non-strict)

right-rigid monoidal category.

4.6 Ribbon categories

Ribbon categories were studied in [Shu94]. The definitions for strict and non-

strict ribbon categories are nearly identical, hence we define them simultane-

ously.

Definition 4.36. A (strict) ribbon category is a right-rigid (strict) monoidal

category that in addition is a (strict) balanced category.

The balancing and rigidity must be compatible:

(θV ⊗ idV ∗) ◦ bV = (idV ⊗ θV ∗) ◦ bV (4.37)

(again the geometric picture in RibI is illuminating).

We now describe some properties of ribbon categories. First, given an
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object V in a ribbon category V and a morphism f : V → V we define the

quantum trace of f :

trq(f : V → V ) := dV ◦ cV,V ∗ ◦ ((θV ◦ f)⊗ idV ∗) ◦ bV (4.38)

Furthermore the quantum dimension is defined by:

dimq(V ) := trq(idV ) = dV ◦ cV,V ∗ ◦ (θV ⊗ idV ∗) ◦ bV (4.39)

We note that if the objects in the underlying category have some underlying

intrinsic notion of trace and dimension (e.g. the objects are finite-dimensional

vector spaces) then it is not true that the quantum trace and quantum dimen-

sion necessarily agree with the intrinsic notions. For example the quantum

dimension need not even be an integer.

Every ribbon category is pivotal, that is for each object V there is a

distinguished isomorphism V →̃V ∗∗ determined by the composition: 3

V
� idV ⊗bV ∗ // V ⊗ V ∗ ⊗ (V ∗)∗ � θV ⊗idV ∗⊗idV ∗∗ //

V ⊗ V ∗ ⊗ (V ∗)∗ � cV,V ∗⊗idV ∗∗ // V ∗ ⊗ V ⊗ (V ∗)∗ � dV ⊗idV ∗∗ // V ∗∗

(4.40)

Again (if the objects are finite-dimensional vector spaces) this isomorphism is

typically not the same as the canonical vector space isomorphism V →̃V ∗∗.

It is also a fact that ribbon categories are spherical, that is dimq(V ) =

3This composition makes sense for strict ribbon categories. There is a similar composition
for non-strict ribbon categories. We note that it is not obvious that this composition of
morphisms is an isomorphism. This can be proven using the functor F introduced in the
next section (see [Tur94] pg. 40).
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. . .

. . .

V1 V2 Vk

W1 W2 Wl

Figure 4.6: An elementary (k, l)-ribbon graph.

dimq(V
∗) for every object. The proof requires the functor F discussed in the

next section.

4.7 Invariants of colored (k, l)-ribbon graphs

using ribbon categories

In the last several sections we have been considering the category RibI where

I is some arbitrary labeling set. Suppose that we replace I with a right-rigid

strict monoidal category V and consider RibV , i.e. we color the oriented ribbons

(and annuli) with objects in V . Because of the right-rigid strict monoidal

structure we can go further and color the coupons with morphisms as well.

We discuss this now.

First consider an elementary (k, l)-ribbon graph in standard drawing

position as depicted in figure (4.6). The graph is called “elementary” because

there is neither braiding nor twisting in any of the ribbons (neither birth nor

death), there is a single coupon, and all of the ribbons terminate on the coupon.
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Denote V +1 := V and V −1 := V ∗. Then it makes sense to color the

coupon in figure (4.6) with a morphism

φ ∈ Hom(V ±1
1 ⊗ . . .⊗ V ±1

k ,W±1
1 ⊗ . . .⊗W±1

l ) (4.41)

where we use +1 for ribbons pointing “up” and −1 for ribbons pointing

“down”. Note that both the monoidal and rigidity properties of V have been

used. In this way we can color coupons in any arbitrary colored (k, l)-ribbon

graph.

Let us introduce the terminology fully colored (k.l)-ribbon graphs

for ribbon graphs where all of the coupons are colored with morphisms. Using

this enrich RibV by replacing the morphisms (colored (k, l)-ribbon graphs)

with fully colored (k, l)-ribbon graphs.

Generalizing the above construction to the non-strict case RibNS
V is

straightforward and left to the reader.

The main functor F

We can go further and consider RibV where V is now a strict ribbon category.

Then we have two strict ribbon categories to consider: RibV (which is a strict

ribbon category since any RibI is) and V . The main theorem for ribbon cate-

gories is the following (proven by Reshetikhin and Turaev in the language of

quantum groups):

Theorem 4.42 (Reshetikhin, Turaev). Let V be a strict ribbon category.

Consider the enriched strict ribbon category RibV (enriched means the mor-

phisms are fully colored (k, l)-ribbon graphs). Set notation for primitive ribbon
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V V

WV V

ϕVXV,W↑V ↓V

Figure 4.7: A list of primitive ribbons graphs. The notation will be used in
theorem (4.42)

graphs as in figure (4.7). Then there is a unique strict monoidal functor

F : RibV → V (4.43)

such that

F ([[V,+1]]) = V (4.44)

F ([[V,−1]]) = V ∗

F (↑V ) = idV

F (↓V ) = idV ∗

F (XV,W ) = cV,W

F (ϕV ) = θV

We have not seen a non-strict version of this theorem stated and proven

in the literature, however the following analogue is almost certainly true (and

we implicitly use it in the remainder of this paper):

Conjecture 4.45. Let V be a ribbon category. Consider the enriched rib-

bon category RibNS
V (enriched means the morphisms are fully colored non-

associative (k, l)-ribbon graphs). Set notation for primitive ribbon graphs as in
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V V

WV V

ϕVXV,W↑V ↓V

1
U

V

W

V V

AU,V,W RV LVvacuum

Figure 4.8: A list of primitive “non-associative” ribbons graphs. The notation
will be used in conjecture (4.45)

figure (4.8). Then there is a unique monoidal functor

F : RibNS
V → V (4.46)
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such that

F ([[V,+1]]) = V (4.47)

F ([[V,−1]]) = V ∗

F (↑V ) = idV

F (↓V ) = idV ∗

F (XV,W ) = cV,W

F (ϕV ) = θV

F (AU,V,W ) = aU,V,W

F (RV ) = rV

F (LV ) = lV

4.8 Modular tensor categories

In this section we define modular tensor categories. We shall make no reference

to strict/non-strict categories, leaving it to the reader to make the appropriate

substitutions where necessary.

We begin with a preliminary definition:

Definition 4.48. Consider a preadditive category V that also is enriched so

that the Hom sets are C-vector spaces (rather than just abelian groups). Then

a simple object Vx is an object such that

Hom(Vx, Vx) ∼= C (4.49)

Suppose that V is an enriched preadditive category and in addition is
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a ribbon category. We require that the preadditive structure be compatible

with the monoidal structure (i.e. ⊗ distributes over + of morphisms). Then it

is straightforward to check that the dual V ∗x of a simple object is also simple.

It is also straightforward to prove that 1 is a simple object.

The definition of a modular tensor category in [Tur94] is based on pread-

ditive ribbon categories and is slightly more general than what is presented

below. We restrict attention to additive ribbon categories:

Definition 4.50. A modular tensor category is a category with the fol-

lowing structure:

1. Ribbon category

2. Additive category enriched over C-vector spaces

3. Ribbon/additive compatibility (⊗ distributes over ⊕)

4. Semisimple with finitely-many simple objects

5. The S-matrix is invertible, where S is defined by (using the ribbon

structure on simple objects Vx and Vy):

Sx,y := trq(cVy ,V ∗x ◦ cV ∗x ,Vy) (4.51)

6. A choice of square root

D :=
√ ∑

simple objects

(dimq(Vx))2 (4.52)

Since for a simple object Hom(Vx, Vx) ∼= C we see that the twist iso-

morphism θVx : Vx → Vx is given by a complex number (denoted θx).
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The following expressions will be used often in the sequel:

p+ :=
∑

simple objects

(dimq(Vx))
2θx (4.53)

p− :=
∑

simple objects

(dimq(Vx))
2θ−1
x

It is a fact (see [BK00]) that

D2 = p+p− (4.54)

4.9 Invariants of 3-manifolds, 2+1-dimensional

TQFTs from MTCs

We mentioned in section (4.7) that associated to any ribbon category V is a

monoidal functor

F : RibV → V (4.55)

Using this functor it is straightforward to assign to any fully-colored (k, l)-

ribbon graph in R3 a morphism V ±1
1 ⊗ . . .⊗V ±1

k → W±1
1 ⊗ . . .⊗W±1

l between

the object coloring the bottom of the graph and the object coloring the top.

It is proven in [Tur94] that the resulting morphism is invariant under regular

isotopy of the ribbon graph.

Now we turn our attention to modular tensor categories. We shall see

that the stronger structure allows us to define invariants of closed oriented

3-manifolds (and, eventually, 2+1 TQFTs). Before we begin suppose first

that we have a ribbon graph in S3. It is easy to isotope any ribbon graph in

S3 = R3 ∪{∞} appropriately to “miss” the point {∞}, hence we can consider
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a
b

Figure 4.9: A torus with oriented meridian and longitude.

the ribbon graph as embedded in R3 (where we can apply the functor F ).

Since we wish to study closed oriented 3-manifolds X the following

standard theorem is useful: 4

Theorem 4.56 (Dehn, Lickorish). Any orientable closed 3-manifold X can

be obtained from S3 by drilling out solid tori and gluing them back in along

different diffeomorphisms (up to isotopy) of their boundaries. Furthermore,

each such surgery can be assumed to be an “integer surgery” (see below).

Surgery

The diffeomorphisms along which we reglue the solid tori can be neatly encoded

in terms of framed links in S3. This can be seen by considering each solid torus

individually. Before drilling out the solid torus pick a reference longitude b and

meridian a on the boundary as in figure (4.9).

From chapter (2) we know that MCG(T 2) ∼= PSL(2,Z). In particular a

4Actually the original theorem requires rational surgery, but there is a well-known algo-
rithm to reduce from rational surgery to integer surgery (see, e.g., [PS96]). Since we will
not require rational surgery we do not bother here.
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b

a

b′

a′

Figure 4.10: A Dehn twist on the curve a.

diffeomorphism is determined by the action on homology generators 5

a =

1

0

 b =

0

1

 (4.57)

Consider the effect of drilling out a single torus and gluing it back in along

the diffeomorphism determined by the matrix

T =

1 1

0 1

 (4.58)

This is depicted in figure (4.10). It is not difficult to convince oneself that

this surgery does not change the topology of the 3-manifold (removing a solid

torus, cutting it, twisting it, gluing it together, and replacing it in the hole is

the same as simply filling in the hole). More generally the surgery determined

5This is not true in higher genus.
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by the boundary diffeomorphism

Tm =

1 m

0 1

 (4.59)

also does not change the topology of the 3-manifold.

Because of this observation we have the following common fact (we

could not find the simple argument written down, hence we write it here for

completeness):

Fact 4.60. A surgery on a single solid torus is determined by specifying two

relatively-prime integers q and p. We say that the ratio q
p

determines a ratio-

nal surgery. In fact we only have to specify the image of a

a 7→ q · a+ p · b (4.61)

Proof. We construct a matrix

q −r
p s

 ∈ SL(2,Z) (4.62)

for some integers r and s. Since the determinant must be 1, we want to find

integers r and s such that

qs+ pr = 1 (4.63)

However since q and p are relatively prime the Euclidean algorithm can be

used to find suitable integers r and s that satisfy the above equation. The

choice is not unique since r − kq and s+ kp also works for any integer k.
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We need to know how the surgeries determined by the matrices

q −r
p s


q −(r − kq)

p s+ kp

 (4.64)

differ. It is easy to check that

q −(r − kq)

p s+ kp

 =

q −r + kq

p s+ kp

 =

q −r
p s


1 k

0 1

 =

q −r
p s

T k
(4.65)

Hence the surgeries differ by precomposing with a T k surgery (which we already

argued does not change the topology of the 3-manifold).

This proves that a surgery along a single solid torus is determined by

two relatively prime integers q and p.

When p = 1 this is integer surgery. There is a standard algorithm that

reduces rational surgery to integer surgery (by continued fraction expansion

and drilling out more solid tori, see [PS96]) hence we set p = 1 from now on.

Therefore a surgery along a single solid torus is determined by a single integer

q and we have the following corollary:

Corollary 4.66. Any closed oriented 3-manifold X can be presented as a

surgery along framed links in S3.

Proof. Dehn-Lickorish implies that any closed oriented 3-manifold X can be

obtained by drilling out/regluing solid tori in S3. If we consider the cores

of the tori this determines a link in S3 (from the link components we could

recover the solid tori by thickening). The only issue is how to encode the

regluing diffeomorphism. We have seen that any integer surgery (along a
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1-framing0-framing

Figure 4.11: Framed unknots with 0 and 1 framing, respectively. The lower
diagrams are the skeletal schematic diagrams.

single solid torus) is determined by a single integer q, hence we can frame

the corresponding link component with the appropriate framing number q.

Repeating this for all of the solid tori produces a framed link in S3 that

determines the surgery completely.

Example 4.67. The most important example is the torus switch, i.e. surgery

along a framed unknot with framing number 0 (see the left side of figure (4.11)).

Since q = 0 we have that the following matrix determines the surgery

S =

0 −1

1 0

 (4.68)
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a
b

b̃

ã

Figure 4.12: Heegaard decomposition of S3 into two solid tori. The “plug” is
a solid torus that has been cut. Imagine deforming the plug (as shown) and
enveloping completely the other solid torus to form a 3-ball with boundary S2

(i.e. identify the longitude of the solid torus with the meridian of the plug, and
the meridian of the solid torus with the longitude of the plug). Since the plug
is actually a cut solid torus we know that the top hemisphere of the boundary
S2 should be identified with the bottom hemisphere. Topologically this is not
different than crushing the entire S2 to a point. However, the 3-ball with
boundary S2 crushed to a point is just S3. We do not draw the orientations
for a, b, ã, and b̃, however a quick check verifies that a↔ b̃ and b↔ ã, which is
an orientation reversing gluing diffeomorphism as expected since we can only
glue outgoing boundaries to incoming boundaries.

This sends

a 7→ b b 7→ −a (4.69)

i.e. the longitude and meridian swap roles (this is an orientation preserving

map).

On the other hand consider the Heegaard decomposition of S3 into two

solid tori depicted in figure (4.12). We have the identifications

a↔ b̃ (4.70)

b↔ ã

If we drill out one of the tori from figure (4.12), apply the self-diffeomorphism
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determined by the S matrix given above, and reglue then we have the identi-

fications 6

a 7→ b⇒ b↔ b̃ (4.71)

b 7→ −a⇒ −a↔ ã

In other words we have two solid tori that are glued together (longitude

to longitude, meridian to meridian). Since a solid torus is just D2 × S1 where

the S1 factor can be identified with b, and the boundary of the disk D2 can be

identified with a, we see that gluing the two solid tori together gives S2 × S1

(for a fixed point on the longitude S1 both solid tori look like D2 × {pt} -

gluing two disks together along the boundary gives us a 2-sphere S2 × {pt}).

Summarizing, a surgery along a 0-framed unknot in S3 gives the closed

oriented 3-manifold S2 × S1. Iterating the surgery again we recover S3.

Example 4.72. It is shown in [PS96] that a surgery with framing number ±1

(see the right side of figure (4.11)) along an isolated unknot is trivial, i.e. the

3-manifold topology does not change. For example the diffeomorphism for the

+1 framing is 1 0

1 1

 (4.73)

and the proof that this does not alter the topology of the 3-manifold is similar

6We need to be careful with orientations, i.e. the S matrix is an orientation preserving
self-diffeomorphism, but the cutting and regluing are orientation reversing operations.
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to the proof that the T matrix diffeomorphism

1 1

0 1

 (4.74)

does not alter the 3-manifold. We note that this only applies to isolated

unknots. For contrast ±1-framed surgery along a component that is linked is

nontrivial.

In general, given an oriented closed 3-manifold presented by some other

means (say, a Heegaard decomposition), it may be difficult to provide a surgery

presentation of framed links in S3. Furthermore, the surgery presentation is

certainly not unique (considering the example above, we could add as many

±1-framed isolated unknots to the diagram as desired and not change the

resulting 3-manifold. Likewise we could add even pairs of torus switches along

isolated unknots and still not change the resulting 3-manifold).

However, any two surgery presentations of the same 3-manifold can be

related by the Kirby moves (see, e.g., [PS96]). Since we do not require

these moves explicitly (and since they are standard) we omit their description.

However, we note that the proof that a modular tensor category gives 3-

manifold invariants essentially reduces to showing invariance under the Kirby

moves.

Invariants of closed 3-manifolds from MTCs

Once a surgery presentation is specified for X the computation of the 3-

manifold invariant is straightforward. The strategy is to average over all
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possible colorings of the framed link L in S3. 7 We pick an orientation on

each of the components of L = {L1, . . . , Lm}. The chosen orientation does not

affect the invariant because we are summing over all colorings. 8

Note that in general we may allow the 3-manifoldX to also contain some

embedded oriented fixed colored ribbon graph Ω in addition to the oriented

framed link L. It is understood that Ω does not participate in the surgery.

If we pick a coloring for L by simple objects {Vi}i∈I then we can com-

pute the ribbon graph invariant F (L ∪ Ω). Denote by Vλi the coloring of the

link component Li.

We require a normalization convention. Every oriented framed link

L = {L1, . . . , Lm} has an m × m linking number matrix B where an off-

diagonal element is given by

Bij = lk(Li, Lj) =
# positive crossings−# negative crossings

2
(4.75)

and a diagonal element is just

Bii = framing number of Li (4.76)

Denote the signature of this matrix by σ(L). Then, given a surgery presenta-

tion for X as a framed link L in S3 we compute the 3-manifold invariant

τ(X) := p
σ(L)
− D−σ(L)−m−1

∑
col of L

(
m∏
i=1

dimq(Vλi)

)
F (L ∪ Ω) (4.77)

The components of L can only be colored by simple objects.

7Hence the necessity for finitely-many simple objects.
8Recall that we can switch orientation if we replace a coloring V with the dual V ∗.
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(2 + 1)-dimensional topological quantum field theory

The 3-manifold invariant provided in the last subsection can be exploited fur-

ther to produce an extended (2 + 1)-dimensional TQFT in the sense of chap-

ter (2). Consider an oriented 3-manifold X with boundary ∂X = −Σ− t Σ+.

For simplicity we assume that Σ− and Σ+ are connected closed 2 surfaces 9

It was stated in chapter (2) that an extended structure is required on 2-

surfaces and 3-bordisms in order to define an anomaly-free (2+1)-dimensional

TQFT. However for closed 3-manifolds there is a canonical choice for this

extended structure (see [Ati90b]) and hence we did not need to mention it in

the previous subsection concerning 3-manifold invariants.

We now place a strong structure on a boundary 2-surface Σ. We say

that Σ is parameterized if it is equipped with a fixed diffeomorphism

φ : ∂Hg → Σ (4.78)

where Hg is a standard handlebody that we now specify. 10

Standard handlebodies

We define the standard handlebody Hg of genus g as a thickening of the stan-

dard uncolored ribbon graph Rg (embedded in R3) depicted in figure (4.13).

The boundary is a surface Σg of genus g. The handlebody Hg inherits an

9In general colored ribbon graphs Ω can terminate on the boundary forming marked
arcs. As mentioned in chapter (2) these can also be viewed as parameterized boundary
circles (from the perspective of conformal field theory).

10In the same spirit as the Segal modular functor (where the complex structure turned out
to be irrelevant when defining a projective representation of MCG(Σ)) the parameterization
is irrelevant if we are content with TQFTs with gluing anomaly, and the dependence is weak
for a full anomaly-free TQFT.
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Rg

Hg

1 2 g

Figure 4.13: Standard handlebody Hg with the standard embedded ribbon
graph Rg.

orientation from its embedding in R3. We endow Σg with the orientation that

agrees with the boundary orientation, i.e. Σg = ∂Hg. In this sense Σg is

outgoing.

Likewise we define the standard handlebody Hg as a thickening of the

standard uncolored ribbon graph Rg depicted in figure (4.14). 11 Again the

boundary is a surface Σg of genus g. Hg inherits an orientation from its

embedding in R3. However here we supply Σg with the opposite orientation

from the boundary orientation, i.e. Σg = −∂Hg. In this sense Σg is incoming.

There is a natural identification 12

Σg = −Σg (4.79)

We can color the ribbons of Rg (in order from left to right) with simple

objects {Vλ1 , . . . , Vλg}. Denote the resulting ribbon graph by

Rg(Vλ1 , . . . , Vλg) (4.80)

11Note that Rg is not exactly a mirror image of Rg.
12The construction is more complicated in the presence of marked arcs.
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Rg

Hg

1
g − 1 g

Figure 4.14: Standard handlebody Hg with the standard embedded ribbon
graph Rg.

We can also then color the coupon with a morphism

f : 1→ Vλ1 ⊗ V ∗λ1
⊗ · · · ⊗ Vλg ⊗ V ∗λg (4.81)

Denote the resulting fully-colored ribbon graph by

Rg(Vλ1 , . . . , Vλg ; f) (4.82)

Similarly we can color the ribbons ofRg with simple objects {Vζ1 , . . . , Vζg}

and denote the resulting ribbon graph

Rg(Vζ1 , . . . , Vζg) (4.83)

Likewise can then color the coupon with a morphism

h : Vζ1 ⊗ V ∗ζ1 ⊗ · · · ⊗ Vζg ⊗ V
∗
ζg → 1 (4.84)
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Denote the fully colored ribbon graph by

Rg(Vζ1 , . . . , Vζg ;h) (4.85)

If we color the ribbons of Rg and Rg with the same ordered list of simple

objects {Vλ1 , . . . , Vλg} then we have

f ∈ Hom(1, Vλ1 ⊗ V ∗λ1
⊗ · · · ⊗ Vλg ⊗ V ∗λg) (4.86)

h ∈ Hom(Vλ1 ⊗ V ∗λ1
⊗ · · · ⊗ Vλg ⊗ V ∗λg , 1) = (4.87)

= (Hom(1, Vλ1 ⊗ V ∗λ1
⊗ · · · ⊗ Vλg ⊗ V ∗λg))

∗ (4.88)

where the last line follows from the natural pairing

h(f) := h ◦ f ∈ Hom(1, 1) ∼= C (4.89)

In this way we see that a colored coupon in Rg lives in the dual space of a

colored coupon in Rg.

Hilbert space of states

Now we describe how to associate a vector space (or Hilbert space if the

theory is unitary - see [Tur94]) to an oriented closed surface Σ of genus g

equipped with a parameterization φ : ∂Hg → Σ. Again this construction can

be straightforwardly generalized to surfaces with marked arcs.

Since the surface is parameterized we identify it as the boundary of the

standard handlebody Hg. The embedded ribbon Rg is uncolored. The idea is

116



to sum over all possible colorings of Rg. Define the associated vector space:

F (Σ) :=
⊕

col {Vλ1
,...,Vλg}

Hom(1, Vλ1 ⊗ V ∗λ1
⊗ · · · ⊗ Vλg ⊗ V ∗λg) (4.90)

This defines part of the non-extended modular functor from chapter (2)). It

is still necessary to describe the action of diffeomorphisms Σ→ Σ on F (Σ).

Operators associated to oriented 3-bordisms

Recall that X is an oriented 3-manifold with boundary ∂X = ∂X− t ∂X+ =

−Σ− t Σ+. For simplicity we assume that Σ− and Σ+ are connected closed 2

surfaces of genus g− and g+, respectively. In addition assume that we have an

extended structure on the boundaries, i.e. parameterizations

φ− : ∂Hg− → Σ− (4.91)

φ+ : ∂Hg+ → Σ+

From the axioms for a TQFT we expect to assign to the 3-bordism X

an operator

τ(X) : F (Σ−)→ F (Σ+) (4.92)

The matrix elements of the operator τ(X) are determined by the fol-

lowing recipe: pick a basis for F (Σ−) (and for F (Σ+)). The vector space

F (Σ−) is defined by equation (4.90) (and similarly for F (Σ+)). Using the pa-

rameterizations of Σ− and Σ+ we “cap off” X with the standard handlebodies

to produce a closed 3-manifold X̃ (with embedded uncolored ribbon graphs

Rg− Rg+ in the handlebodies).
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Choosing a specific basis element out of F (Σ−) and a specific basis

element out of F (Σ+) is the same as specifying a coloring for Rg− and Rg+ .

Then calculating the 3-manifold invariant τ(X̃) ∈ C gives the corresponding

matrix element for the operator

τ(X) : F (Σ−)→ F (Σ+) (4.93)

We only need to be careful about orientations to ensure that the cor-

rect handlebodies are glued onto the correct boundary components. Recall

that in order to maintain an overall well-defined orientation under gluing it is

necessary to stipulate that incoming boundary components can only be glued

to outgoing boundary components (i.e. the gluing diffeomorphisms must be

orientation reversing).

Since the defined orientation of Σ− disagrees with its induced orien-

tation as part of the boundary ∂X− we can use the parameterization φ− :

∂Hg− → Σ− = −∂X− to glue Hg− to X. This is an orientation-reversing

diffeomorphism, and effectively caps off Σ−.

Now consider Σ+. Here the defined orientation agrees with the bound-

ary orientation ∂X+, so we cannot glue using the parameterization φ+ :

∂Hg+ → Σ+ = ∂X+ since this is orientation preserving. However, we can

use the mirror standard handlebody Hg+ instead since we have a natural iden-

tification −∂Hg+ = ∂Hg+ . The same map φ+ is orientation reversing

φ+ : ∂Hg+ → Σ+ = ∂X+ (4.94)

so we cap off Σ+ with the standard handlebody Hg+ .
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Mapping class group

In particular the operator assignment τ(X) for a 3-bordism X provides a

(projective - see below) representation of the mapping class group for any

surface Σ of genus g.

Consider the surface Σ parameterized by a fixed diffeomorphism φ :

∂Hg → Σ. Form the 3-manifold X = Σ × I with boundary ∂X = −Σ t Σ

where both the incoming and outgoing boundary components have the same

parameterization φ. The operator associated to Σ× I (using the above proce-

dure) is just the identity

τ(X) = id : F (Σ)→ F (Σ) (4.95)

Now assume the we have some isotopy class of diffeomorphisms [f ] ∈

MCG(Σ) that are not isotopic to the identity. Picking a representative dif-

feomorphism f : Σ → Σ we form a new 3-manifold Xf = Σ × I where the

outgoing boundary component Σ is still parameterized by φ, however the in-

coming boundary component Σ is parameterized instead by the map f ◦ φ.

Clearly when we “cap off” with standard handlebodies the resulting closed 3-

manifold X̃f will be different, hence the operator τ(Xf ) will not be the identity,

but instead a nontrivial operator

τ(Xf ) : F (Σ)→ F (Σ) (4.96)

In this way we can associate to any element f of MCG(Σ) a linear

operator τ(Xf ) : F (Σ) → F (Σ). The composition of diffeomorphisms g ◦ f

can be realized by gluing the outgoing boundary component of Xf to the
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incoming boundary component of Xg, so we have

τ(Xg◦f ) = τ(Xg ∪glued Xf ) = kτ(Xg) ◦ τ(Xf ) (4.97)

using the gluing properties outlined in chapter (2). Notice the gluing anomaly

k, hence we have a projective representation of MCG(Σ).

4.10 Trivial examples from (D, q, c)

In chapter (3) it was shown that the quantum data for (non-spin) toral Chern-

Simons theories is encoded in a finite abelian group D, a pure quadratic form

q : D → Q/Z, and c (an integer mod 24) that encodes a choice of cube root of

the Gauss reciprocity formula.

An easy semisimple ribbon category that can be formed (mentioned in

the appendix of [Del99]) from (D, q, c) is the group algebra C[D] where we

write D multiplicatively:

1. For each x ∈ D we define a simple object Cx (a copy of C labeled by

the group element). An arbitrary object is defined to be a formal ⊕ of

simple objects.

2. Define the tensor product using the group law, i.e. Cx ⊗ Cy = Cxy

(extend to arbitrary objects using additivity).

3. A morphism k : Cx→ Cx from a simple object to itself is just multipli-

cation by a complex number k. The set Mor(Cx,Cy) for x 6= y contains

only the zero morphism 0. Extend to arbitrary objects in the obvious

way by additivity.
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4. It is easy to check that C[D] is a strict monoidal category.

We define a ribbon category C[D](D,q,c) (recall b : D⊗D → Q/Z is the bilinear

form induced from q):

1. The braiding cx,y : Cx⊗ Cy → Cy ⊗ Cx on two simple objects is defined

as (since in this case Cx⊗ Cy ∼= Cy ⊗ Cx ∼= Cxy)

Cxy → Cxy multiplication by exp (2πib(x, y)) (4.98)

2. Enforcing the balancing condition (and using the fact that b(x, y) =

q(x+ y)− q(x)− q(y) we see that the twist for a simple object is

Cx→ Cx multiplication by exp (2πi2q(x)) (4.99)

It is easy to compute the S-matrix:

Sxy = exp (2πi2b(−x, y)) = exp (−2πi2b(x, y)) (4.100)

However it is easy to see that for U(1) at level B where B is an even

integer the above S-matrix is singular. For example (see chapter (3)), for

B = 2 the discriminant group is D ∼= Z2 = {0, 1/2}, and the only non-

degenerate bilinear form is determined by

b(1/2, 1/2) = 1/2 (mod 1) (4.101)
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Hence we see that 2b(1/2, 1/2) = 1 = 0 (mod 1). So the S matrix is

1 1

1 1

 (4.102)

which is clearly singular. It is trivial to see that for any cyclic group of even

order there will always be two rows in the S-matrix with 1’s in the entries (the

first row always has 1’s in the entries). Hence the S-matrix will be singular

in these cases, i.e. C[D](D,q,c) is often not a modular tensor category. These

theories cannot describe toral Chern-Simons.
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Chapter 5

Group Categories

5.1 Introduction

The goal of this chapter is to construct a family of modular tensor categories

such that the associated TQFTs are isomorphic to the TQFTs arising from

toral (non-spin) Chern-Simons theories. 1 We already saw an easy family of

examples in chapter (4) but we argued that these categories do not correspond

to toral Chern-Simons.

Here we formulate the underlying braided categories in terms of an ex-

plicit set of equations. It turns out that these equations can be cast in the

language of abelian group cohomology formulated by Eilenberg and MacLane

in the 1940’s, hence allowing the use of homology and homotopy theory tech-

niques [EMb]. This identification was studied (in various incarnations) by

Frölich and Kerler [FK93], Joyal and Street [JS93], and Quinn [Qui99]. The re-

sulting braided categories are group categories. Recently much more work has

1Belov and Moore produce only part of the data required for an extended (2 + 1)-dim
TQFT. We prove an isomorphism of (non-extended) 2-d modular functors in this paper.
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been done concerning group categories 2 (see for example [ENO05, DGNO07]).

The same braiding construction in slightly altered language also appeared in

appendix E of [MS89] as well as in [MPR93].

We point out that if the Belov-Moore construction had provided an

extended 2-d modular functor (see chapter (2)) then we could reverse-engineer

the corresponding modular tensor categories As mentioned more completely

in chapter (2) we have the following causal relationships:

Modular Tensor Category +3

++XXXXXXXXXXXXXXXXXXXXXXX
Extended (2 + 1)-dim TQFT

��

+3 (2 + 1)-dim TQFT

Extended 2-d Modular Functor

jj /7gggggggggggggggggggg

gggggggggggggggggggg

(5.1)

In this limited sense the modular tensor categories described here extend

and complete the partial theories introduced in [BM05] using a rather different

approach.

From toral Chern-Simons considerations in chapter (3) it was shown

that the quantum data is encoded in a finite abelian group D, a pure quadratic

form q : D → Q/Z, and c (an integer mod 24) that encodes a choice of cube

root of the Gauss reciprocity formula. Hence we shall use this data to construct

a modular tensor category. We remind the reader that we are not considering

the more general spin/odd theories considered in [BM05], but rather we are

restricted to the even theories because modular tensor categories correspond

to ordinary TQFTs. We also mention that the third piece of data c will not

be necessary. However c can play a role depending on the type of extended

structure placed on 3-bordisms [Ati90b, Wal91, FG91]. 3

2We thank Victor Ostrik for useful comments that guided us toward these examples.
3Two examples of an extended structure are a 2-framing and a p1-structure. The 2-
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5.2 Category CD of D-graded complex vector

spaces

Let D be a finite 4 group (not necessarily abelian, but abelian in our case). Fol-

lowing Frölich and Kerler [FK93], Quinn [Qui99], and Joyal and Street [JS93]

we consider the following category CD:

1. Ob(CD) consists of finite-dimensional D-graded complex vector spaces.

In other words each object V ∈ Ob(CD) is a finite-dimensional com-

plex vector space that can be decomposed into homogeneously-graded

summands V = ⊕x∈DVx.

2. Mor(CD) consists of C-linear maps that respect the group grading (i.e.

the only nonzero blocks in a linear map L : (V = ⊕x∈DVx) → (W =

⊕y∈DWy) are along the diagonal x = y).

3. CD has a monoidal structure ⊗. If Vx and Wy are homogeneously-graded

objects then the product is defined by: Vx⊗Wy ≡ (V ⊗W )xy (the tensor

product on the RHS is the usual one for vector spaces, and the grading

obeys the group law). More generally, for non-homogeneously-graded

objects if we impose the condition that ⊗ distributes over ⊕ then the

above multiplication formula becomes convolution:

(V ⊗W )z = ⊕x,y|xy=zVx ⊗ Vy (5.2)

framing is related to the p1-structure by a factor of 1/3, hence this explains why the treat-
ment in [BM05] requires a cube root of the Gauss reciprocity formula whereas we do not.
Compare equation (2.1) in [Ati90b] with theorem (2.3) in [FG91].

4We limit ourselves to finite groups here, but this is not necessary.
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The product of morphisms is defined similary.

Now let us make explicit some of the properties of CD:

1. Since the vector space tensor product is strictly associative (see chap-

ter (4)) and group multiplication is strictly associative we have that CD

is strictly associative with the identity

⊕x,y,z|(xy)z=a (Vx ⊗Wy)⊗ Zz = ⊕x,y,z|x(yz)=aVx ⊗ (Wy ⊗ Zz) (5.3)

2. The vector space tensor product always comes equipped with a canonical

isomorphism PermV,W : V ⊗W→̃W ⊗ V defined on vectors by v⊗w 7→

w ⊗ v. This product is symmetric, meaning that we have an involution

PermV.W ◦ PermV,W = id. More generally, the symmetric group Sn acts

on the tensor product of n factors. If we mod out by the action of Sn

then we obtain the symmetric tensor product. In this sense the vector

space tensor product is commutative.

Now consider the graded picture. For x, y ∈ D it is not always true

that xy = yx, hence PermV,W does not in general lift to a canonical

isomorphism Vx ⊗Wy 9 Wy ⊗ Vx (since morphisms by definition must

preserve grading). However, if D is abelian then xy = yx and we have

an induced canonical isomorphism

PermV,W : Vx ⊗Wy→̃Wy ⊗ Vx (5.4)

for any x, y ∈ D.

3. Following the approach outlined in chapter (4) we will shortly abandon
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the above associativity and commutativity in favor of a nontrivial family

of natural isomorphisms.

4. CD is an abelian category enriched over C-vector spaces. This is easily

verified as follows: it is clearly preadditive (Ab-category) since the sets

Mor(CD) are abelian groups (even better they are C-vector spaces, so we

refer to the morphism sets as Hom sets from here on).

The ⊕ operation makes CD an additive category. It is preabelian because

any linear map in Hom(V,W ) has a kernel and a cokernel. Finally, it is

easy to verify that any injective map L : V → W is the kernel of some

map (namely the projection W → W/L(V )); also any surjective map

L : V → W is the cokernel of the projection map V ⊕W → V . So CD

is an abelian category enriched over C-vector spaces.

5. The monoidal structure on CD is compatible with the abelian category

structure (i.e. ⊗ distributes over ⊕).

6. CD is clearly semisimple (every short exact sequence splits). More plainly

any object can be decomposed as the direct sum of simple objects. The

simple objects are 1-dimensional homogeneously-graded vector spaces;

we denote them

{Cx}x∈D simple objects. (5.5)

7. There are only finitely-many simple objects since D is a finite group. In

fact it is easy to define left and right duals and interpret CD as a fusion

category, but we refrain from doing so (we shall only define a right dual

below).
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8. CD can be viewed as the group ring VectC[D] where the coefficients are

finite dimensional complex vector spaces.

9. Alternatively, CD can be profitably interpreted as the category of finite

dimensional complex vector bundles over D. The multiplication of two

complex vector bundles is defined to be the pushforward along multipli-

cation on the base space D (i.e. convolution).

The category CD is the canonical example of a group category :

Definition 5.6. A group category 5 is a category with the following addi-

tional structure:

1. Additive ⊕

2. Monoidal ⊗

3. ⊗ distributes over ⊕.

4. Each Hom space is an complex vector space. 6

5. An object V is called simple if Hom(V, V ) ∼= C. Group categories are

required to be semisimple (any object can be decomposed as a finite

sum of simple objects - however there need not be finitely-many simple

objects).

5We follow Quinn’s definition [Qui99] which has an additive structure that does not
appear in the “categorical groups” discussed in Joyal and Street [JS93] (the only objects in
[JS93] are simple). However by adding a formal ⊕ it is trivial to recover Quinn’s definition.

6Quinn points out that it is often necessary to work with R-modules where R is a com-
mutative ground ring. We do not need that greater generality here.
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6. For each simple object V we require a right dual object V ∗ and a dis-

tinguished isomorphism dV : V ∗ ⊗ V → 1 where 1 is the unit object for

the monoidal structure. 7

7. If V and W are distinct simple objects then we require Hom(V,W ) ∼= 0.

We note that the existence of a distinguished isomorphism dV for each

simple object is a strong condition. We say that the simple objects are invert-

ible. It is straightforward to check that the definition implies that if V and W

are simple then V ⊗W is simple. In other words the simple objects form a

group - the underlying group of the group category.

From here on we limit ourselves to the situation where D is a finite

abelian group.

5.3 Twisted version C(D,q): nontrivial associa-

tivity and braiding

In the last section we introduced the category CD. We mentioned that if

the underlying group D is abelian then CD is commutative in the sense that

the tensor product of n objects admits an action of the symmetric group Sn.

Furthermore the monoidal structure is strict. Since we are dealing with finite

abelian groups from now on we switch from multiplicative xy to additive x+ y

notation.

In light of chapter (4) we aim to twist the structure described in the last

section to produce a non-strict modular tensor category. Since the quantum

7This is the “dV ” map that is part of the definition of duality. However here it is an
isomorphism rather than just a morphism. We did not mention this for the example CD,
but we shall mention it below.
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data for toral Chern-Simons is encoded in the trio (D, q, c) we expect to use

this data to twist the structure appropriately (however we shall not require

c in this chapter). In light of this we denote the resulting twisted category

C(D,q). Interestingly, a fixed set of data (D, q) actually produces a family of

modular tensor categories. We shall discuss how MTCs in a given family are

related to each other.

Since C(D,q) is an additive category it suffices to confine our study to

the simple objects

{Cx}x∈D (5.7)

(we can extend to arbitary objects by additivity). The fusion rules are trivial

because of the strong structure imposed by a group category:

Cx ⊗ Cy ∼= Cx+y (5.8)

Let us first consider relaxing the associativity identity in equation (5.3) and

allow instead a family of natural isomorphisms

{ax,y,z : (Cx ⊗ Cy)⊗ Cz→̃Cx ⊗ (Cy ⊗ Cz)}x,y,z∈D (5.9)

Since the tensor product of simple objects is simple, for fixed x, y, z ∈ D this

is just an endomorphism

ax,y,z : Cx+y+z→̃Cx+y+z (5.10)

In other words for each x, y, z ∈ D it suffices to specify a complex number

ax,y,z (we have reused notation) such for v ∈ Cx+y+z we have v 7→ ax,y,zv.
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It is clear that the unit object is just 1 ≡ C0. In order to find the

coefficients ax,y,z we impose the pentagon identity (equation (4.15)) and the

triangle identity (equation (4.16)). Since all isomorphisms involved are merely

multiplication by complex numbers we need not be concerned with ordering.

Explicity, for vx ∈ Cx, vy ∈ Cy, vz ∈ Cz, and vw ∈ Cw we follow the upper part

of the pentagon diagram:

((vx ⊗ vy)⊗ vz)⊗ vw 7→ ax+y,z,w(vx ⊗ vy)⊗ (vz ⊗ vw) 7→

ax,y,z+wax+y,z,wvx ⊗ (vy ⊗ (vz ⊗ vw)) (5.11)

Following the lower part of the pentagon diagram gives us

((vx ⊗ vy)⊗ vz)⊗ vw 7→ ax,y,z(vx ⊗ (vy ⊗ vz))⊗ vw 7→

ax,y+z,wax,y,zvx ⊗ ((vy ⊗ vz)⊗ vw) 7→ ay,z,wax,y+z,wax,y,zvx ⊗ (vy ⊗ (vz ⊗ vw))

(5.12)

Comparing these we see that

ax,y,z+wax+y,z,w = ay,z,wax,y+z,wax,y,z (5.13)

If we restrict ourselves to solutions living in the unit circle then we can

write

ax,y,z := exp(2πih(x, y, z)) (5.14)
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for a phase function h : D3 → Q/Z. Equation (5.13) becomes

h(x, y, z+w)+h(x+y, z, w) ≡ h(y, z, w)+h(x, y+z, w)+h(x, y, z) (mod 1)

(5.15)

Now let us consider the triangle diagram in equation (4.16). If we

set the right and left identity maps in equations (4.13) and (4.14) to be just

multiplication by 1, then the triangle diagram implies

ax,0,y = 1 (5.16)

In terms of h this is just (mod 1)

h(x, 0, y) = 0 (5.17)

It is easy to exploit equation (5.15) to then prove that (mod 1)

h(x, 0, y) = h(0, x, y) = h(x, y, 0) = 0 (5.18)

Now we wish to consider the hexagon relations depicted in equations (4.24)

and (4.25). For simple objects Cx and Cy we postulate a braiding isomorphism

meant to replace the involution Perm: 8

cx,y : Cx ⊗ Cy→̃Cy ⊗ Cx (5.19)

Again, because of the trivial fusion rules Cx ⊗ Cy ∼= Cx+y this is effectively an

8this can be extended to arbitrary objects by linearity
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isomorphism

cx,y : Cx+y→̃Cx+y (5.20)

and hence is determined by a 1×1 complex matrix [cx,y]. Continuing with our

previous restriction to coefficients living in the unit circle

cx,y := exp(2πis(x, y)) s : D2 → Q/Z (5.21)

we see that the hexagon relations imply (mod 1)

s(x, y + z) = −h(x, y, z) + s(x, y) + h(y, x, z) + s(x, z)− h(y, z, x) (5.22)

s(x+ y, z) = h(x, y, z) + s(y, z)− h(x, z, y) + s(x, z) + h(z, x, y)

As was the case for the function h, it is easy to calculate using these identities

that

s(0, y) = s(x, 0) = 0 (5.23)

Summarizing, we can twist the category CD into a braided group cat-

egory C(D,q) by relaxing the associativity and commutativity identities. We

still expect that any reasonable theory should obey the pentagon, triangle,

and hexagon relations as described in chapter (4). Since the fusion rules are

rather simple these relations can be cast into the form of equations (5.15),

(5.18), and (5.22) which are valued in Q/Z.

An interesting observation is that typically there are multiple solutions

to these equations (that turn out to be braided monoidal equivalent). Since

there are multiple solutions we denote the group category associated to a
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solution (h, s) by the notation

C(D,q)(h, s) (5.24)

This provides a richer structure than one might naively expect. In the

next section following Frölich and Kerler [FK93], Quinn [Qui99], and Joyal

and Street [JS93] we identify these equations as cocycles in group cohomology

of abelian groups and provide explicit solutions.

5.4 Connection with group cohomology

In this section we provide a brief outline of abelian group cohomology as in-

troduced by Eilenberg and MacLane (see [EMa] for a brief introduction and

[EMb] for a more detailed account). 9

Before we begin fix an underlying group Π (in our case we will be

considering the finite abelian group D). Fix an integer m and an abelian

coefficient group H (in our case H = Q/Z).

Consider a path-connected topological space X such that πm(X) ∼= Π

and all other homotopy groups are trivial (clearly if m > 1 then Π must

be abelian). We wish to study the homology and cohomology groups of this

space. One of the fundamental results of Eilenberg and Maclane is that if

Y is a different topological space with the same homotopy groups then the

9Warning: the conventions used by Quinn [Qui99] do not follow those of Eilenberg and
MacLane. In particular the dimensions of the cells in the relevant complex are defined to
be 1 dimension higher in Quinn’s paper. Hence there he studies H4 whereas the same
cohomology classes are in H3 in the other references.
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homology (cohomology) groups are also the same:

H(X;H) ∼= H(Y ;H) (5.25)

This implies that it suffices to study the homology and cohomology groups

of the standard Eilenberg-MacLane space K(Π,m) (a cell complex explicitly

constructed below such that πm(X) ∼= Π and all other homotopy groups are

trivial).

On the other hand the main point of [EMa] and [EMb] is that if Π is

abelian (it is in our case) then the cell complex K(Π,m) can be replaced by

a cell complex A(Π) such that the cohomology groups Hk(A(Π);H) are much

simpler to compute. By “replace” we mean that the following isomorphism

holds ([EMa] article II, Theorem 6):

Hm−1+k(K(Π,m);H) ∼= Hk(A(Π);H) k = 1, . . . ,m (5.26)

We note that m does not appear on the RHS (and A(Π) is independent of m).

However, the isomorphism only holds for k ≤ m.

We will eventually be interested in the case when m = 2 and k = 3,

which clearly does not satisfy the requirement k ≤ m. However, a more general

statement can be made as follows. The space A(Π) is constructed iteratively

using the bar construction B. That is we have a sequence of embedded spaces

A0(Π) ⊂ A1(Π) ⊂ A2(Π) ⊂ . . . ⊂ A∞(Π) (5.27)

where we start with A0(Π) = K(Π, 1) and apply the iterated bar construction

(see below) A1(Π) = B(A0(Π)), A2(Π) = B(A1(Π)) = B(B(A0(Π))), etc. We
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define A(Π) = A∞(Π).

Now for arbitrary k the following isomorphism holds:

Hm−1+k(K(Π,m);H) ∼= Hk(Am−1(Π);H) (5.28)

which is compatible with the previous isomorphism in the sense that

Hk(Am−1(Π);H) ∼= Hk(A(Π);H) k = 1, . . . ,m (5.29)

For m = 2 and k = 3 (our case of interest) this is just

H4(K(Π, 2);H) ∼= H3(A1(Π);H) (5.30)

Now let us discuss the iterated bar construction which will demonstrate why

we are interested in H3(A1(D);Q/Z).

Iterated bar construction

Since the iterated bar construction bootstraps using K(Π, 1) we construct this

cell complex first. Provide a q-dimensional cell labelled [x1, . . . , xq] for each

q-tuple of elements x1, . . . , xq ∈ Π. This cell attaches to the (q − 1)-skeleton

using the boundary operator

∂[x1, . . . , xq] = [x2, . . . , xq] +
q−1∑
i=1

(−1)i[x1, . . . , xixi+1, . . . , xq]

+ (−1)q[x1, . . . , xq−1] (5.31)
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(for 1-cells the boundary formula is defined as ∂[x] = 0 since each endpoint

will attach to the unique 0-cell [ ]).

From now on we refer to K(Π, 1) as A0(Π). We define a product ∗0 on

the cells of A0(Π) via shuffling (extend this to chains by bilinearity):

[x1, . . . , xq] ∗0 [y1, . . . , yr] =
∑

(−1)ε[z1, . . . , zq+r] (5.32)

Here we are summing over all of the shuffles of the list {x1, . . . , xq, y1, . . . , yr}

where the xi’s must stay in order relative to each other, and likewise for the

yi’s (i.e. x’s can only swap with y’s). The sign (−1)ε is 1 if the total number

of transpositions is even, and −1 if the total number of transpositions is odd.

For abelian Π the operation ∗0 defines a product of excess 0. In general

a product of excess k on a chain complex is a bilinear function ∗k on chains a

and b such that if d(a) denotes the cell dimension of a then

d(a ∗k b) = d(a) + d(b) + k (5.33)

If we define dk(a) = d(a) + k then this can be written more suggestively as

dk(a ∗k b) = dk(a) + dk(b) (5.34)

In addition we require a product of excess k to be associative, graded commu-
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tative, and behave as usual with respect to the boundary operator:

a ∗k (b ∗k c) = (a ∗k b) ∗k c (5.35)

b ∗k a = (−1)εa ∗k b ε = dk(a)dk(b) (5.36)

∂(a ∗k b) = (∂a) ∗k b+ (−1)dk(a)a ∗k (∂b) (5.37)

We iteratively define the complexes A∗(Π) as follows: from the complex

Ak−1(Π) with the product ∗k−1 of excess k − 1 we can produce a complex

Ak(Π) which contains Ak−1(Π) and in addition contains new cells written

[a1|k . . . |kap] ai are cells of Ak(Π) (5.38)

These cells are defined to have cell dimension

d([a1|k . . . |kap]) = d(a1) + . . .+ d(ap) + (p− 1)k (5.39)

In practice we write |1 = |, |2 = ||, etc.

The boundary operator is defined as

∂[a1|k . . . |kap] =
p∑
i=1

(−1)εi−1 [a1|k . . . |kai−1|k∂ai|kai+1|k . . . ap]+

p−1∑
i=1

(−1)εi [a1|k . . . |kai−1|kai ∗k−1 ai+1|kai+2|k . . . ap] (5.40)

where εi = dk(a1) + . . .+ dk(ai).

We can also define a product of excess k on Ak(Π) using a similar shuffle
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construction

[a1|k . . . |kap] ∗k [b1|k . . . |kbr] =
∑

(−1)ε[z1|k . . . |kzp+r] (5.41)

where ε can be determined via the rule: a transposition of a and b multiplies

by a factor (−1)dk(a)dk(b). 10

H3(A1(Π);H)

Using these constructions it is simple to write down the cells in A1(Π) (we will

only bother up through cell dimension 4):

• dimension 0: [ ]

• dimension 1: [x] where x ∈ Π

• dimension 2: [x, y] where x, y ∈ Π

• dimension 3: [x, y, z] and [x|y] where x, y, z ∈ Π

• dimension 4: [x, y, z, w], [x, y|z], and [x|y, z] where x, y, z, w ∈ Π

The boundaries are easily computed:

• dimension 0: ∂[ ] = 0

• dimension 1: ∂[x] = 0

• dimension 2: ∂[x, y] = [y]− [x+ y] + [x]

10again the a’s must stay in order relative to each other, and likewise for the b’s.
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• dimension 3:

∂[x, y, z] = [y, z]− [x+ y, z] + [x, y + z]− [x, y] (5.42)

∂[x|y] = [x, y]− [y, x]

• dimension 4:

∂[x, y, z, w] = [y, z, w]− [x+ y, z, w] (5.43)

+ [x, y + z, w]− [x, y, z + w] + [x, y, z]

∂[x, y|z] = [∂[x, y]|z]− [[x, y] ∗0 z]

= [y|z]− [x+ y|z] + [x|z]− [x, y, z] + [x, z, y]− [z, x, y]

∂[x|y, z] = [x|∂[y, z]]− [x ∗0 [y, z]]

= [x|z]− [x|y + z] + [x|y]− [x, y, z] + [y, x, z]− [y, z, x]

This provides a characterization of homology. Now let us compute co-

homology. We are only interested in H3(A1(Π);H). Consider a 3-cochain (a

homomorphism)

f : 3-chains→ H (5.44)

When restricted to 3-cells of the form [x, y, z] we use the notation

h(x, y, z) := f([x, y, z]) (5.45)

When restricted to 3-cells of the form [x|y] we use the notation

s(x, y) := f([x|y]) (5.46)
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To compute the cocycle condition δf = 0 it is easy to write out the condition

(δf)([4-chain]) := f(∂[4-chain]) = 0 (5.47)

and then use the boundary formulas in equation (5.43). If we consider the

case where Π = D and the coefficient group H = Q/Z then this obviously

reproduces equations (5.15) and (5.22).

The only condition left to encode is the triangle identity (and its con-

sequences) in equation (5.18). For convenience we copy the conditions again:

h(x, 0, z) = h(x, y, 0) = h(0, y, z) = s(x, 0) = s(0, y) = 0 (5.48)

This is straightforward to achieve with cohomology of normalized chains. Let

A1
N(Π) be the subcomplex of A1(Π) consisting of cells [x1, . . . , xq] with at least

one xi = 0 (any of the commas may be replaced with bars | as well). Then all

of the identities are satisfied by the cohomology of normalized 3-cochains 11

H3(A1(D)/A1
N(D);Q/Z) (5.49)

We will refrain from over-decorating the notation with cohomology of normal-

ized chains since it does not affect the outcome.

Explicit cocycles

The groups H3(A1(Π);H) were computed in the original Eilenerg-MacLane

articles (see [EMb] article II pg 92 and pg 130). For Π cyclic an explicit

11A similar subcomplex KN (Π,m) of K(Π,m) can be defined and cohomology can be
studied there as well.
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computation is performed in [JS93] and the full computation for general finite

abelian groups can be found in [Qui99]. For the reader who wishes to compare

the different references we emphasize again the following isomorphism:

H4(K(Π, 2);H) ∼= H3(A1(Π);H) (5.50)

Let q1 : D → Q/Z and q2 : D → Q/Z be two pure quadratic forms.

Then it is easy to verify that q1 + q2 is also a pure quadratic form. It is also

trivial to verify that for a pure quadratic form q its inverse −q is also a pure

quadratic form. Finally the constant function q = 0 is also a pure quadratic

form. Hence the set of pure quadratic forms

{q : D → Q/Z} (5.51)

forms a group which we denote by Quad(D,Q/Z). It is shown in [EMb] pg

130 that there is a canonical isomorphism

H3(A1(D);Q/Z)→̃Quad(D,Q/Z) (5.52)

determined by defining q(x) := s(x, x).

What we are missing is a recipe that produces an explicit representative

cocycle (h, s) from a finite abelian group D equipped with a quadratic form

q : D → Q/Z. Following Quinn [Qui99] we have the following (family of)

explicit solutions:

1. Pick a set of generators 1i for D (D is a finite abelian group, hence can

be decomposed into cyclic factors of order ni)
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2. Pick an ordering of the generators 11 < 12 < . . .

3. Write any arbitrary element x ∈ D as x = a111 + a212 + . . . such that

0 ≤ ai < ni for every i

We emphasize that this construction is not well defined on the group D, but

is well defined on the group D equipped with ordered generators. For further

emphasis we repeat that the coefficients ai must always be written as

integers 0 ≤ ai < ni (i.e. we do not write −x = −a111 − a212 − . . ., but

rather −x = (n1 − a1)11 + (n2 − a2)12 + . . .).

Since D is equipped with a quadratic form q we denote qi := q(1i) ∈

Q/Z. Also a pure quadratic form q : D → Q/Z determines a bilinear form

b : D ⊗ D → Q/Z defined by b(x, y) := q(x + y) − q(x) − q(y). We denote

bij := b(1i, 1j).

Then if x =
∑
i ai1i, y =

∑
i bi1i, and z =

∑
i ci1i then the associativity

is defined by

h(x, y, z) =
∑
i


0 if bi + ci < ni

niaiqi if bi + ci ≥ ni

(5.53)

and the braiding is given by

s(x, y) =
∑
i<j

aibjbij +
∑
i

aibiqi (5.54)

Some quick calculations confirm that this solution satisfies equations (5.15),

(5.18), and (5.22).
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Coboundaries and braided monoidal equivalence

We mentioned in the last section that a cohomology class [h, s] is determined

by a quadratic form q : D → Q/Z, and to find an explicit representative (h, s)

we are forced to pick an ordered set of generators.

The isomorphism (proved in [EMb])

H3(A1(D);Q/Z)→̃Quad(D,Q/Z) (5.55)

means that if we have two representatives (h, s) and (h′, s′) that are determined

by different choices of ordered generators then their difference (h, s)− (h′, s′)

must be a coboundary. This is easy to show directly: if we consider the

homology boundary maps in equation (5.42) then passing to cohomology the

expression (h, s)−(h′, s′) should be the coboundary of some function k : D2 →

Q/Z, i.e.

(h− h′)(x, y, z) = k(y, z)− k(x+ y, z) + k(x, y + z)− k(x, y) (5.56)

(s− s′)(x, y) = k(x, y)− k(y, x)

A tedious calculation shows that for (h, s), (h′, s′) determined by different

choices of ordered generators there is such a function k.

Now we must answer how two group categories C(D,q)(h, s) and C(D,q)(h
′, s′)

constructed from cohomologous (h, s) and (h′, s′) are related. It turns out

that the resulting group categories are braided monoidal equivalent. This was

proven by Joyal and Street [JS93] (the proof is written in slightly greater detail

below).

In order to define a braided monoidal equivalence we start with some
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preliminaries.

Definition 5.57. Let V , V ′ be two monoidal categories. A monoidal functor

is a triple (F, φ2, φ0) given by [JS93]

1. A functor F : V → V ′.

2. A family of natural isomorphisms (one for each pair of objects A,B ∈ V):

φ2,A,B : FA⊗ FB→̃F (A⊗B) (5.58)

3. An isomorphism

φ0 : 1′→̃F1 (5.59)

In addition we require that the following diagrams commute:

FA⊗ (FB ⊗ FC)
idA⊗φ2,B,C

))TTTTTTTTTTTTTTT

(FA⊗ FB)⊗ FC

aA,B,C
44jjjjjjjjjjjjjjj

φ2,A,B⊗idC
��

FA⊗ F (B ⊗ C)

φ2,A,B⊗C
��

F (A⊗B)⊗ FC
φ2,A⊗B,C

**TTTTTTTTTTTTTTT
F (A⊗ (B ⊗ C))

F ((A⊗B)⊗ C)

F (aA,B,C)
55jjjjjjjjjjjjjjj

(5.60)

FA⊗ 1′
rFA //

idFA⊗φ0

��

FA 1′ ⊗ FA
lFA //

φ0⊗idFA
��

FA

FA⊗ F1
φ2,A,1 // F (A⊗ 1)

F (rA)

OO

F1⊗ FA
φ2,1,A // F (1⊗ A)

F (lA)

OO (5.61)

We can have natural transformations (and natural isomorphisms) be-

tween ordinary functors; we want to extend to a notion of monoidal natural
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transformation between two monoidal functors.

Definition 5.62. Let F : V → V ′ and G : V → V ′ be monoidal functors. A

monoidal natural transformation is an ordinary natural transformation

θ : F → G that in addition is required to satisfy the following commutative

diagrams:

FA⊗ FB
φF2,A,B //

θA⊗θB

��

F (A⊗B)

θA⊗B

��

F1

θ1

��

1′

φF0

>>}}}}}}}}

φG0

  AAAAAAAA

GA⊗GB
φG2,A,B // G(A⊗B) G1

(5.63)

This defines a monoidal natural isomorphism if all of the arrows θA are

isomorphisms. We denote a monoidal natural isomorphism by the symbol ∼=.

Now define a notion of equivalence between two monoidal categories:

Definition 5.64. Let (F, φF2 , φ
F
0 ) : V → V ′ and (F ′, φF

′
2 , φ

F ′
0 ) : V ′ → V be

monoidal functors. Then these are said to be a monoidal equivalence if

F ′ ◦ F ∼= IV F ◦ F ′ ∼= IV ′ (5.65)

where IV , IV ′ are the identity monoidal functors.

Now we are ready to consider braided monoidal categories.

Definition 5.66. Let V and V ′ be braided monoidal categories with braidings

c and c′, respectively (in the sense of chapter (4)). A braided monoidal

functor F : V → V ′ is a monoidal functor that in addition must make the

146



following compatibility diagram commute:

FA⊗ FB
φ2,A,B //

c′FA,FB
��

F (A⊗B)

F (cA,B)

��
FB ⊗ FA

φ2,B,A// F (B ⊗ A)

(5.67)

Definition 5.68. A braided natural transformation between two braided

monoidal functors F : V → V ′ and G : V → V ′ is a monoidal natural trans-

formation θ : F → G that satisfies the following compatibility commutative

diagram:

FA⊗ FB
c′FA,FB//

θA⊗θB
��

FB ⊗ FA
θB⊗θA
��

GA⊗GB
c′GA,GB// GB ⊗GA

(5.69)

Obviously this defines a braided monoidal natural isomorphism if all of

the arrows θA are isomorphisms. We reuse notation and denote this ∼=.

Definition 5.70. Let (F, φF2 , φ
F
0 ) : V → V ′ and (F ′, φF

′
2 , φ

F ′
0 ) : V ′ → V be

braided monoidal functors. Then these are said to be a braided monoidal

equivalence if

F ′ ◦ F ∼= IV F ◦ F ′ ∼= IV ′ (5.71)

where IV , IV ′ are the identity braided monoidal functors.

Two braided monoidal categories that are braided monoidal equivalent

are (in the above sense) the same. This is the appropriate way to interpret the

following theorem which answers how to relate group categories constructed

by choosing different ordered lists of generators.

Theorem 5.72 (Joyal and Street). The group categories C(D,q)(h, s) and C(D,q)(h
′, s′)
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are braided monoidal equivalent iff (h, s) and (h′, s′) are cohomologous 3-

cocycles in H3(A1(D);Q/Z).

Proof. (⇐) Suppose that (h, s) and (h′, s′) are cohomologous, i.e. let k : D2 →

Q/Z be as in equation (5.56). Since both categories share the same underlying

ordinary category we consider the identity functor

I : C(D,q)(h, s)→ C(D,q)(h
′, s′) (5.73)

This functor is not yet a monoidal functor because the associativity structures

h and h′ are different. We need to construct φ2 and φ0.

It is enough to consider the simple objects and extend by linearity. Let

x, y ∈ D. Then the map 12

φ2,x,y : Cx ⊗ Cy→̃Cx ⊗ Cy multiplication by exp(2πik(x, y)) (5.74)

and the map

φ0 : 1→̃1 multiplication by 1 (5.75)

define a monoidal functor (I, φ2, φ0) since it is straightforward to verify that

the diagram in equation (5.60) is encoded in the first line of equation (5.56)

(and the other diagrams are trivial).

In fact (I, φ2, φ0) also defines a braided monoidal functor because the

diagram in equation (5.67) is seen to be encoded in the second line of equa-

tion (5.56).

Finally, (I, φ2, φ0) and its obvious inverse (I, φ−1
2 , φ−1

0 ) are verified (triv-

ially) to form a braided monoidal equivalence.

12the source and target and the same since we are using the identity functor
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(⇒) Straightforward using essentially the reverse argument to produce

k (left to the reader since we shall not use this result).

5.5 Modular tensor category

The categories C(D,q)(h, s) are braided (non-strict) monoidal categories. In

addition we have seen that they are finitely-semisimple abelian categories.

13 In this section we slightly extend the categories C(D,q)(h, s) to produce

modular tensor categories (we use the same notation since no additional data is

required). We do not know if this appears explicitly elsewhere in the literature.

Ribbon structure

First, it is necessary to form a ribbon structure on C(D,q)(h, s). We start with

the twist.

Twisting

Note that the quadratic form satisfies q(x) := s(x, x). For a simple object Cx

we define the twist to be

θx : Cx → Cx (5.76)

v 7→ exp(2πiq(x))v

This can be extended to arbitrary objects by linearity. We need to check the

balancing identity in equation (4.29).

13They are also enriched over C-vector spaces, i.e. the Hom sets are C-vector spaces.
Furthermore the monoidal structure and the abelian structure are compatible in the sense
that ⊗ distributes over ⊕.
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Proposition 5.77. The braided monoidal category C(D,q)(h, s) with twisting

defined on the simple objects Cx by

θx : Cx → Cx (5.78)

v 7→ exp(2πiq(x))v

is balanced.

Proof. We check this only on the simple objects. Let Cx and Cy be two simple

objects. Since Cx ⊗ Cy ∼= Cx+y what we are trying to verify is the equation

θx+yθ
−1
x θ−1

y = cy,x ◦ cx,y (5.79)

The LHS is easy to write out as

exp[2πi(q(x+ y)− q(x)− q(y))] (5.80)

However, because q is a quadratic form we have q(x+y)−q(x)−q(y) = b(x, y)

where b : D ⊗D → Q/Z is the induced bilinear form.

In terms of the generators 1i for D we can write

x =
∑
i

ai1i (5.81)

y =
∑
j

bj1j

in which case b(x, y) becomes

∑
i,j

aibjb(1i, 1j) (5.82)
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which in the notation preceding equation (5.54) is

∑
i,j

aibjbij (5.83)

which is

= 2
∑
i<j

aibjbij +
∑
i

aibibii (5.84)

(we have used the symmetry of b(·, ·)). However the general relation q(x +

y) − q(x) − q(y) = b(x, y) specializes when x = y to q(2x) − 2q(x) = b(x, x),

and since q is a pure quadratic form we see that this is just 4q(x) − 2q(x) =

2q(x) = b(x, x). In particular bii = 2qi. In light of this the expression above

becomes

2
∑
i<j

aibjbij + 2
∑
i

aibiqi (5.85)

which is clearly equal (after taking the exponent) to the RHS cy,x ◦ cx,y using

the braiding in equation (5.54).

Rigidity

Now let us address rigidity. Again, by linearity it suffices to restrict our at-

tention to the simple objects Cx. Given a simple object Cx the right dual

is

(Cx)
∗ := C−x (5.86)

Pick a basis vx for each {Cx}x∈D (the construction does not depend this
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choice). Define the birth morphism via the formula

bx :1→ Cx ⊗ C−x (5.87)

v0 7→ vx ⊗ v−x

We do not define the death morphism via the obvious formula

dx :C−x ⊗ Cx → 1 (5.88)

v−x ⊗ vx 9 v0

Instead we are obligated to enforce the rigidity conditions in equation (4.35).

Consider the first sequence of maps in equation (4.35) (the second sequence

is similar and provides identical information). For a simple object Cx the

sequence (which must equal idx) is:

vx
l−1
x7−→ v0 ⊗ vx

bx⊗idx7−→ (vx ⊗ v−x)⊗ vx
ax,−x,x7−→

[ax,−x,x] · vx ⊗ (v−x ⊗ vx)
idx⊗dx7−→

[ax,−x,x · dx] · vx ⊗ v0
rV7−→ [ax,−x,x · dx] · vx (5.89)

this implies that

ax,−x,x · dx = 1 (5.90)

i.e.

exp(2πih(x,−x, x)) · dx = 1 (5.91)
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Hence we define the death morphism by the formula

dx : C−x ⊗ Cx→ 1 (5.92)

v−x ⊗ vx 7→ exp(−2πih(x,−x, x))v0 (5.93)

Collecting these facts, we have proven:

Proposition 5.94. The group category C(D,q)(h, s) extended by the above twist-

ing and rigidity is a finitely-semisimple ribbon category.

Quantum dimension

The quantum dimension is defined by equation (4.39). We reuse the following

lemma several times in the sequel:

Lemma 5.95. Let Cx be a simple object in C(D,q)(h, s). Then the map

dx ◦ cx,−x ◦ (θx ⊗ id−x) : Cx ⊗ C−x ∼= 1→ 1 (5.96)

is just multiplication by 1.

Proof. This is a calculation (with a fairly tricky point that has confused the

author more than once). θx is multiplication by the coefficient exp(2πiq(x)).

The braiding cx,−x is multiplication by exp(2πis(x,−x)), and the death oper-

ator dx is multiplication by exp(−2πih(x,−x, x)). Hence the total coefficient

is just exp[2πi(q(x) + s(x,−x) − h(x,−x, x))]. In terms of ordered genera-

tors for D we write x =
∑
i ai1i. The tricky point is that it is not true that

−x =
∑
i(−ai)1i. In view of the commentary above equations (5.53) and (5.54)
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we see instead that −x =
∑
i(ni − ai)1i, so

q(x) + s(x,−x) =
∑
i<j

aiajbij +
∑
i

aiaiqi

+
∑
i<j

ai(nj − aj)bij +
∑
i

ai(ni − ai)qi =

∑
i<j

ainjbij +
∑
i

ainiqi (5.97)

However
∑
i<j ainjbij =

∑
i<j b(ai1i, nj1j) =

∑
i<j b(ai1i, 0) = 0. Hence we are

left with

q(x) + s(x,−x) =
∑
i

ainiqi (5.98)

The death operator gives

h(x,−x, x) =
∑
i

niaiqi (5.99)

so

q(x) + s(x,−x)− h(x,−x, x) =
∑
i

ainiqi −
∑
i

ainiqi = 0 (5.100)

Taking the exponent we get that the map is just multiplication by 1.

This easily implies the following (note: this result has nothing to do

with the fact that the simple objects are 1-dimensional vector spaces Cx; the

quantum dimension is not related):

Corollary 5.101. The simple objects Cx in C(D,q)(h, s) all have quantum di-

mension dimq(Cx) = 1.
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Modular tensor category

In light of proposition (5.94) we only need to mention the rank D and verify

that the S matrix is invertible. Then we will have a modular tensor category.

The rank is

D =
√∑
x∈D

(dimq(Cx))2 =
√
|D| (5.102)

The coefficients of the S matrix are determined by equation (4.51).

Recall that the quadratic form q : D → Q/Z induces a bilinear form b :

D ⊗D → Q/Z. A quick calculation using equation (5.54) shows that

Sx,y = exp (2πib(−x, y)) = exp (−2πib(x, y)) (5.103)

This proves:

Theorem 5.104. The group category C(D,q)(h, s) extended with the twist and

rigidity structure defined above is a modular tensor category iff the quadratic

form q : D → Q/Z is a refinement of a bilinear form b : D ⊗ D → Q/Z such

that the matrix Sx,y = exp (−2πib(x, y)) is invertible.

We believe that the following proposition is true for all finite abelian

groups, but we have only been able to prove it for cyclic groups:

Proposition 5.105. Let D be a cyclic group. Then the matrix Sx,y = exp (−2πib(x, y))

is invertible iff b : D ⊗D → Q/Z is non-degenerate.

Proof. If b is degenerate then the matrix b(x, y) has two rows consisting of

zeros: the top row (since b(0, y) = 0) and another row b(x, y) = 0 for some

x 6= 0. Hence the matrix

Sx,y = exp (−2πib(x, y)) (5.106)
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has two rows filled with 1’s, hence Sx,y is not invertible.

Conversely, suppose that b is non-degenerate. Let 1 be a generator for

the cyclic group D of order n, and define X := exp (−2πib(1, 1)). Then for

integers k, l = 0, 1, 2, . . . , n− 1 we have the S-matrix

Sk,l := Xkl (5.107)

A Vandermonde determinant is a determinant of a matrix of the form



1 x1 x2
1 x3

1 . . .

1 x2 x2
2 x3

2 . . .

1 x3 x2
3 x3

3 . . .
...


(5.108)

It is well-known that the determinant of this matrix is just

∏
0≤k<l≤n−1

(xl − xk) (5.109)

The S-matrix is of the Vandermonde form



1 1 1 1 . . .

1 X X2 X3 . . .

1 X2 X4 X6 . . .

1 X3 X6 X9 . . .
...


(5.110)

Since for non-degenerate b we have that Xk 6= X l when k 6= l we see that the

determinant of S is non-zero.
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Chapter 6

Main Theorem

6.1 Introduction

The goal of this chapter is to provide a correspondence between the toral (non-

spin) Chern-Simons theories classified by Belov and Moore (see chapter (3))

and the group categories described in chapters (4) and (5). We achieve this

by showing that the respective projective representations of the mapping class

group 1 are isomorphic.

Let Σ be a closed surface. The toral Chern-Simons projective repre-

sentation of MCG(Σ) factors through the symplectic group Sp(2g,Z). This is

explicitly given in equations (3.96), (3.97), and (3.98). The bulk of the work

in this chapter concerns deriving the projective representation of MCG(Σ) in-

duced from C(D,q)(h, s) using surgery. The main work involves converting a

Heegaard decomposition into a surgery presentation.

1we restrict ourselves to closed surfaces
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6.2 Projective representation of MCG(Σ) from

C(D,q)(h, s)

As a first step we outline briefly some standard constructions from low-dimensional

topology (see, for example, [PS96]).

Presentation of the mapping class group via Dehn-Lickorish

twists

Since we wish to consider the group MCG(Σ) we require an efficient presen-

tation for it. It is well known that MCG(Σ) is generated by compositions of

Dehn twists around simple closed curves (see, for example, [FM07]). We use

the standard “turn left” Dehn twist convention as depicted in figure (4.10).

We note that “turn left” makes sense independent of any choice of orientation

of the curves.

It is equally well known that for a closed surface Σ of genus g it suffices

to consider only Dehn twists along the 3g−1 Lickorish generators depicted in

figure (6.1). In what follows we will limit our study to the Lickorish generators.

Motivation

It was mentioned in chapter (4) (and studied thoroughly in [Tur94]) that a

modular tensor category associates to any oriented 3-manifold X with bound-

ary ∂X = −Σ− t Σ+ an operator

τ(X) : F (Σ−)→ F (Σ+) (6.1)
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a2
ag

bg
cg−1

b2c1

a1

b1

Figure 6.1: The 3g − 1 Lickorish generators.

In general X needs to be endowed with some extended structure in order

to construct a theory free from gluing anomalies. The boundary surfaces

Σ− and Σ+ must be endowed with some extra structure (a parameterization

here) to construct a theory at all. However, if we are satisfied with a TQFT

with anomaly then the parameterization is irrelevant, and for an anomaly-free

TQFT the dependence on parameterization is very weak (see chapter (2)). The

matrix elements of τ(X) are defined by first “capping off” Σ− and Σ+ with the

standard handlebodies Hg− and Hg+ , respectively. 2 We then choose a coloring

for the embedded ribbon graphs Rg− and Rg+ . This gives a closed 3-manifold

X̃ with colored embedded ribbons. The matrix element (corresponding to the

chosen coloring) is defined to be the 3-manifold invariant τ(X̃) ∈ C. Varying

over all choices of coloring gives all of the matrix elements of the operator

τ(X) : F (Σ−)→ F (Σ+) (6.2)

In particular recall that this procedure provides a (projective) repre-

2using the parameterizations
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sentation of the mapping class group for any surface Σ of genus g equipped

with a parameterization φ : ∂Hg → Σ. We start by considering the cylinder

Σ× I where both boundary components Σ× {0} and Σ× {1} have the same

parameterization φ.

Then given an isotopy class of diffeomorphisms [f ] ∈ MCG(Σ) pick a

representative diffeomorphism f : Σ→ Σ. Then alter the parameterization of

the boundary component Σ× {0} to be

f ◦ φ (6.3)

Denote Σ× I (with the altered parameterization of Σ×{0}) by Xf . Then the

operator

τ(Xf ) : F (Σ)→ F (Σ) (6.4)

defines a projective representation of MCG(Σ).

Converting Heegaard decomposition to integer surgery

presentation

We just saw that in order to study the projective action of the MCG(Σ) we cap

off the 3-manifold Xf with standard handlebodies to form X̃f . However, since

Σ×I deformation retracts onto Σ by collapsing the interval I, we can view the

closed manifold X̃f as two solid handlebodies glued along f . This provides a

Heegaard decomposition for X̃f (however the standard handlebodies contain

the embedded ribbon graphs Rg and Rg, respectively).

To find the matrix elements we are required to calculate the 3-manifold

invariant τ(X̃f ). However, the machinery described in chapter (4) relies on
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Figure 6.2: A link diagram in S3 that reproduces the identity map that glues
two genus 1 standard handlebodies together (left) or more generally two genus
g standard handlebodies (right). The bottom component is Rg and the top
component is Rg. The middle link(s) encode the surgery.

an integer surgery presentation instead. Hence we are left with the task of

converting a Heegaard decomposition into a surgery presentation. Our task is

greatly simplified since MCG(Σ) is generated by the Lickorish generators.

First suppose f = id (so we have two genus g standard handlebodies

glued together along the identity boundary diffeomorphism). We want to

obtain this manifold from integer surgery along links in S3. In genus 1 this

is straightforward and already described in chapter (4). Two solid tori glued

together along the identity boundary diffeomorphism is just S2×S1. This can

be obtained from S3 (see figure (4.12)) by a single torus switch, i.e. a 0-framed

surgery (see figure (4.11)).

If we remember to place the ribbon graphs Rg and Rg into the handle-

bodies then we obtain a surgery presentation in S3 as in figure (6.2) (left side).

Note that the ribbon graphs Rg and Rg do not participate in the surgery.

Now consider a Dehn twist along one of the Lickorish simple closed

curves in figure (6.1). There is a surgery that is equivalent to performing this

Dehn twist. The trick is sketched in [PS96] on pg. 85. The appropriate surgery
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A B

a

b

ã

A B

a

b

ã

Figure 6.3: A cross-section of the handlebody. The Dehn twist takes place on a
simple closed curve (not shown) separating A and B. The curve is pushed into
the handlebody, slicing it. It is then thickened up to a solid torus, and then
is drilled out. this leaves a torus-shaped hole (not drawn) in the handlebody.
The region labelled A is rotated past B one full turn (making sure that any
necessary deformation is restricted to the torus-shaped hole). The solid torus
is then glued back in. The curve b̃ is not shown.

entails the following steps. First push the curve slightly into the handlebody

Hg. As the curve is pushed let it slice the handlebody (see figure (6.3)). Now

thicken up the curve to a solid torus and drill it out (this leaves a torus-

shaped “hole”). Next draw some markings a and b on the solid torus and

matching markings ã and b̃ on the complementary hole (choose orientations

as in figure (4.9)). Perform the Dehn twist by sliding A past B one complete

revolution and then regluing (we can confine any necessary stretching to the

torus-shaped hole). Now glue the solid torus back in. This produces the

following identifications:

ã = a− b (6.5)

b̃ = b
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This procedure can be viewed equivalently as not stretching in the hole, but

rather stretching the solid torus in the opposite direction and gluing it back

in. In other words we can equivalently solve for a and b in terms of ã and b̃ to

obtain

a = ã+ b̃ (6.6)

b = b̃

which is just the surgery matrix

1 0

1 1

 (6.7)

i.e. a 1-framed surgery (as in example (4.72)). This shows that we can per-

form a Dehn twist along a simple closed curve as in figure (6.1) by replac-

ing it with a 1-framed surgery along the same simple closed curve. Let us

exploit this by providing surgery presentations for the Lickorish generators

{a1, . . . , ag, b1, . . . , bg, c1, . . . , cg−1} as in figures (6.4), (6.5), and (6.6).

Representation of Lickorish generators from C(D,q)(h, s)

Given the simplistic fusion rules for the simple objects of C(D,q)(h, s) (that were

specified in chapter (5)) it is easy to see that for x1, . . . , xg ∈ D the following

tensor product is 1-dimensional:

Cx1 ⊗ C−x1 ⊗ · · · ⊗ Cxg ⊗ C−xg ∼= 1 (6.8)
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Figure 6.4: A link diagram in S3 that reproduces the Dehn twist along a1 as
in figure (6.1). The bottom component is Rg and the top component is Rg.
The unoriented links encode the surgery.

Figure 6.5: A link diagram in S3 that reproduces the Dehn twist along b1 as
in figure (6.1). The bottom component is Rg and the top component is Rg.
The unoriented links encode the surgery.

164



Figure 6.6: A link diagram in S3 that reproduces the Dehn twist along c1 as
in figure (6.1). The bottom component is Rg and the top component is Rg.
The unoriented links encode the surgery.

Since Hom(1, 1) ∼= C we see that

Hom(1,Cx1 ⊗ C−x1 ⊗ · · · ⊗ Cxg ⊗ C−xg) ∼= C (6.9)

is 1-dimensional.

Therefore given a coloring x1, . . . , xg ∈ D for the ribbons in figure (4.13)

(embedded in Hg) the coloring of the coupon ∈ Hom(1,Cx1 ⊗ C−x1 ⊗ · · · ⊗

Cxg ⊗ C−xg) is essentially unique (up to a complex constant). In terms of a

basis vx ∈ Cx for the simple objects let us (for example) color the coupon with

the linear map

v0 7→ vx1 ⊗ v−x1 ⊗ · · · ⊗ vxg ⊗ v−xg (6.10)

However, since the associativity isomorphisms are non-trivial we should be
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careful with parenthesis (we choose the convention to group from the left):

v0 7→ (· · · (([vx1 ⊗ v−x1 ]⊗ [vx2 ⊗ v−x2 ])⊗ [vx3 ⊗ v−x3 ])⊗ · · · ⊗ [vxg ⊗ v−xg ]

(6.11)

Similarly, for the handlebody Hg the space

Hom(Cx1 ⊗ C−x1 ⊗ · · · ⊗ Cxg ⊗ C−xg , 1) ∼= C (6.12)

is 1-dimensional (the associativity parenthesis have been omitted to avoid con-

fusion). Given a coloring x1, . . . , xg ∈ D for the ribbons in figure (4.14) we

color the coupon with the linear morphism (for example)

(· · · (([vx1 ⊗ v−x1 ]⊗ [vx2 ⊗ v−x2 ])⊗ [vx3 ⊗ v−x3 ])⊗ · · · ⊗ [vxg ⊗ v−xg ] 7→ v0

(6.13)

The computed matrix elements depend on the choices made above, how-

ever it is easy to see (see equation (4.90)) that all choices made above are

equivalent to choosing a basis for the Hilbert space F (Σ). Hence the operator

is well-defined independent of these choices.

The identity diffeomorphism id : Σ→ Σ (sanity check)

Let us proceed to calculate the matrix corresponding to the identity diffeo-

morphism

id : Σ→ Σ (6.14)

The surgery presentation for this is given in figure (6.2). In genus g the

different vertical braid sections do not interact (on the right side of figure (6.2)),

hence we restrict ourselves to genus 1 and the genus g calculation will be g
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x

k

y

Figure 6.7: Surgery presentation of identity diffeomorphism id : Σ → Σ in
genus 1. The surgery is performed on the link component colored by Ck.

copies of the genus 1 calculation tensored together. Consult figure (6.7). It is

understood that x ∈ D and y ∈ D are fixed, and k ∈ D is summed over since

that component performs the surgery.

We note that we are required to explicitly write the associativity maps

since they are nontrivial (see chapter (5)). However, we shall see shortly that

they cancel each other (this is only true because the category is abelian), hence

we will drop the explicit associativity maps quickly.

Also we recall lemma (5.95). When we annihilate a simple object Cx

and its dual C−x we do not bother to write the map dx ◦ cx,−x ◦ (θx ⊗ id−x)

since it is trivial.
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Following the diagram from the bottom to the top we compute

v0 7→ vx ⊗ v−x (6.15)

7→ (vx ⊗ v−x)⊗ (vk ⊗ v−k)

7→ [ax,−x,k−k]vx ⊗ (v−x ⊗ (vk ⊗ v−k))

7→ [ax,−x,k−k][a
−1
−x,k,−k]vx ⊗ ((v−x ⊗ vk)⊗ v−k)

7→ [ax,−x,k−k][a
−1
−x,k,−k][c

−1
k,−x]vx ⊗ ((vk ⊗ v−x)⊗ v−k)

7→ [ax,−x,k−k][a
−1
−x,k,−k][c

−1
k,−x][c

−1
−x,k]vx ⊗ ((v−x ⊗ vk)⊗ v−k)

7→ [ax,−x,k−k][a
−1
−x,k,−k][c

−1
k,−x][c

−1
−x,k][a−x,k,−k]vx ⊗ (v−x ⊗ (vk ⊗ v−k))

7→ [ax,−x,k−k][a
−1
−x,k,−k][c

−1
k,−x][c

−1
−x,k][a−x,k,−k][a

−1
x,−x,k−k](vx ⊗ v−x)⊗ (vk ⊗ v−k)

Clearly the associativity coefficients cancel each other. Annihilating Cx⊗C−x
we obtain

7→ [c−1
k,−x][c

−1
−x,k]vk ⊗ v−k (6.16)

It is easy to convince ourselves that the associativity maps are always going

to appear in cancelling pairs, hence we omit them from here on to simplify

notation. Note that, in principle, the associativity maps must be included.

Continuing up the diagram, there is a birth of Cy ⊗ C−y:

7→ [c−1
k,−x][c

−1
−x,k](vy ⊗ v−y)⊗ (vk ⊗ v−k) (6.17)

7→ [c−1
k,−x][c

−1
−x,k][c−y,k]vy ⊗ vk ⊗ v−y ⊗ v−k

7→ [c−1
k,−x][c

−1
−x,k][c−y,k][ck,−y](vy ⊗ v−y)⊗ (vk ⊗ v−k)

Annihilate Ck ⊗ C−k, then apply the map in equation (6.13) to annihilate
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Cy ⊗ C−y:

7→ [c−1
k,−x][c

−1
−x,k][c−y,k][ck,−y]v0 (6.18)

Hence the ribbon invariant F (L ∪ Ω) is just

[c−1
k,−x][c

−1
−x,k][c−y,k][ck,−y] (6.19)

To calculate the 3-manifold invariant we use equation (4.77). We note that

the quantum dimension dimq(Cx) = 1 for all simple objects, hence we omit

the dimension factor. The L surgery link is the one colored by Ck, and the

fixed ribbon Ω is the two component ribbon graph colored by Cx and Cy.

Summing over colorings is the same as summing over k ∈ D. So we

have

τ(Xid) = (p−)σ(L)D−σ(L)−m−1
∑
k∈D

F (L ∪ Ω) (6.20)

We calculate using equation (5.54)

[c−1
k,−x][c

−1
−x,k] = exp(2πib(x, k)) (6.21)

[c−y,k][ck,−y] = exp(−2πib(y, k))

hence

τ(Xid) = (p−)σ(L)D−σ(L)−m−1
∑
k∈D

exp(2πib(x, k))exp(−2πib(y, k)) (6.22)

Using the bilinearity and symmetry of b this becomes

τ(Xid) = (p−)σ(L)D−σ(L)−m−1
∑
k∈D

exp(2πib(x− y, k)) (6.23)
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Now we appeal to lemma (6.27) (see below). The 3-manifold invariant

becomes

τ(Xid) = (p−)σ(L)D−σ(L)−m−1D2δx,y (6.24)

The signature of the linking matrix for L is just σ(L) = 0, and in genus g = 1

we have m = 1 component of L. So the 3-manifold invariant is

τ(Xid) = D−2D2δx,y = δx,y (6.25)

as we expect for the identity diffeomorphism id : Σ→ Σ.

In genus g (see right side of figure (6.2)) we have m = g components of

L (it is still true that σ(L) = 0) and the 3-manifold invariant becomes g copies

of D2δx,y tensored together (the normalization must be considered separately):

τ(Xid) = D−g−1D2gδx1,y1 · · · δxg ,yg (6.26)

= Dg−1δx1,y1 . . . δxg ,yg

The projective factor in front is a symptom that we only have a projective

representation of MCG(Σ).

Lemma 6.27. ∑
k∈D

exp(2πib(g, k)) = D2δg,0 (6.28)

Proof. Clearly if g = 0 then the LHS will just be |D|, i.e. D2 for the special

case C(D,q)(h, s) since dimqCx = 1 for all simple objects.

Suppose g 6= 0. In terms of generators 11, . . . , 1p for the group D write
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g =
∑
i gi1i and write any arbitrary element k =

∑
i ki1i. The sum becomes

∑
k∈D

exp(2πi
∑
i,j

gikjbij) =

k1=n1−1∑
k1=0

· · ·
kp=np−1∑
kp=0

∏
i

exp(2πigik1bi1) . . . exp(2πigikpbip) (6.29)

Consider the last sum by itself. We intend to show that this vanishes.

kp=np−1∑
kp=0

∏
i

exp(2πigik1bi1) . . . exp(2πigikpbip) (6.30)

This can be written

kp=np−1∑
kp=0

∏
i

exp(2πigik1bi1) . . . exp(2πigikp−1bi,(p−1))
∏
i

exp(2πigikpbip) =

∏
i

exp(2πigik1bi1) . . . exp(2πigikp−1bi,(p−1))
kp=np−1∑
kp=0

∏
i

exp(2πigikpbip) (6.31)

Again restricting attention to the last sum this is

kp=np−1∑
kp=0

[
∏
i

exp(2πigibip)]
kp (6.32)

However npbip = b(1i, np1p) = b(1i, 0) = 0 so we see that [
∏
i exp(2πigibip)] is an

np-th root of unity. Hence the terms [
∏
i exp(2πigibip)]

0, [
∏
i exp(2πigibip)]

1, . . . , [
∏
i exp(2πigibip)]

np−1

will be symmetrically distributed around the unit circle, so the sum will be

0.
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Dehn twist along a1

Let us proceed to calculate the matrix corresponding to the Dehn twist along

the curve a1 depicted in figure (6.1). Dehn twists along the other ai curves are

similar. Denote the Dehn twist diffeomorphism as

Tai : Σ→ Σ (6.33)

The surgery presentation for this is given in figure (6.4). In genus g the different

vertical braid sections again do not interact (see figure (6.4)), hence we restrict

ourselves to genus 1 since the genus g calculation can be recovered by tensoring

the genus 1 calculation here with g − 1 copies of the genus 1 id calculation as

in equation (6.24) (the normalization must be considered separately). Consult

figure (6.8). It is understood that x ∈ D and y ∈ D are fixed, and k, l ∈ D are

summed over since those components perform the surgery.

In genus 1 we write

Ta =

1 1

0 1

 ∈ MCG(torus) (6.34)

Again, as in the last calculation we drop the explicit associativity maps

since they cancel each other. Technically they should be written, however.

Also again recall lemma (5.95). When we annihilate a simple object Cx

and its dual C−x we do not bother to write the map dx ◦ cx,−x ◦ (θx ⊗ id−x)

since it is trivial.
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x

y

k

l

Figure 6.8: Surgery presentation of Dehn twist along a in genus 1. The surgery
is performed on the link components colored by Ck and Cl.

Following the diagram from the bottom to the top we compute

v0 7→ vx ⊗ v−x (6.35)

7→ (vl ⊗ v−l)⊗ (vx ⊗ v−x)

7→ [θl]vl ⊗ v−l ⊗ vx ⊗ v−x

7→ [θl][c−l,x]vl ⊗ vx ⊗ v−l ⊗ v−x

7→ [θl][c−l,x][cx,−l](vl ⊗ v−l)⊗ (vx ⊗ v−x)

(6.36)

Now annihilating Cl ⊗ C−l gives

7→ [θl][c−l,x][cx,−l]vx ⊗ v−x
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The remainder of the calculation proceeds exactly as for the genus 1 id braid

used to calculate equation (6.24). This implies that the ribbon invariant is

F (L ∪ Ω) = [c−1
k,−x][c

−1
−x,k][c−y,k][ck,−y][θl][c−l,x][cx,−l] (6.37)

Using equation (5.54) we compute

[c−1
k,−x][c

−1
−x,k] = exp(2πib(x, k)) (6.38)

[c−y,k][ck,−y] = exp(−2πib(y, k))

[c−l,x][cx,−l] = exp(−2πib(l, x))

[θl] = exp(2πiq(l))

which implies that the 3-manifold invariant τ(XTa) given by equation (4.77) is

τ(XTa) = (p−)σ(L)D−σ(L)−m−1

∑
k,l∈D

exp(2πib(x, k))exp(−2πib(y, k))exp(−2πib(l, x))exp(2πiq(l)) (6.39)

Breaking the sum up

∑
l

exp(−2πib(l, x))exp(2πiq(l))
∑
k

exp(2πib(x, k))exp(−2πib(y, k)) (6.40)

But by lemma (6.27) the sum over k becomes D2δxy. Hence the 3-manifold

invariant is

τ(XTa) = (p−)σ(L)D−σ(L)−m−1D2δxy
∑
l

exp(−2πib(l, x))exp(2πiq(l)) (6.41)
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Now we use the properties of the bilinear form −b(l, x) = b(l,−x) = q(l−x)−

q(−x)− q(l) and substitute to obtain

τ(XTa) = (p−)σ(L)D−σ(L)−m−1D2δxyexp(−2πiq(x))
∑
l

exp(2πiq(l−x)) (6.42)

We have used the fact that q(−x) = q(x) for a pure quadratic form. The last

sum is just p+ from chapter (4), so the 3-manifold invariant is

τ(XTa) = p+(p−)σ(L)D−σ(L)−m−1 ·D2exp(−2πiq(x))δxy (6.43)

In genus 1 we see that the signature of the linking matrix for L is just σ(L) = 1

(the component colored by Cl has a 1-framing, the component colored by Ck

has a zero framing, and the components are not linked with each other). The

number of components of L is m = 2. Hence the 3-manifold invariant is

τ(XTa) = exp(−2πiq(x))δxy (6.44)

where we have used the fact that p+p− = D2.

In genus g (as in figure (6.4)) this computation is tensored with g − 1

genus 1 id calculations. We recall that from equation (6.24) each genus 1

id computation (without normalization) gives a factor of D2δxiyi . There are

m = g + 1 link components, and the signature is still σ(L) = 1. Thus the

3-manifold invariant for the Dehn twist Tai is

τ(XTai
) = p+p−D

−1−(g+1)−1D2D2(g−1)exp(−2πiq(xi))δx1y1 . . . δxgyg (6.45)

= Dg−1exp(−2πiq(xi))δx1y1 . . . δxgyg
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k

l

x

Figure 6.9: Surgery presentation of Dehn twist along b in genus 1. The surgery
is performed on the link components colored by Ck and Cl.

Dehn twist along b1

The computation for a Dehn twist along b1 is nearly identical. Again we can

restrict to genus 1 as in figure (6.9).

In genus 1 we write

Tb =

 1 0

−1 1

 ∈ MCG(torus) (6.46)

Rather than follow a similar tedious computation we skip to the result

F (L ∪ Ω) = [c−1
k,−x][c

−1
−x,k][c−y,k][ck,−y][θl][c−l,k][ck,−l] (6.47)

176



Using equation (5.54) compute

[c−1
k,−x][c

−1
−x,k] = exp(2πib(x, k)) (6.48)

[c−y,k][ck,−y] = exp(−2πib(y, k))

[c−l,k][ck,−l] = exp(−2πib(l, k))

[θl] = exp(2πiq(l))

which implies that the 3-manifold invariant τ(XTb) given by equation (4.77) is

τ(XTb) = (p−)σ(L)D−σ(L)−m−1

∑
k,l∈D

exp(2πib(x, k))exp(−2πib(y, k))exp(−2πib(l, k))exp(2πiq(l)) (6.49)

Summing over k and using lemma (6.27) this becomes

τ(XTb) = (p−)σ(L)D−σ(L)−m−1
∑
l∈D

D2exp(2πiq(l))δx−y−l,0 (6.50)

which is just

τ(XTb) = (p−)σ(L)D−σ(L)−m−1D2exp(2πiq(x− y)) (6.51)

In genus 1 there are m = 2 components of L. The Cl-colored component has

framing 1. The Ck-colored component has framing 0. These two components

have linking number −1 with respect to each other. Hence the linking matrix

is

B =

 1 −1

−1 0

 (6.52)

177



We see that det(B) = −1, hence there is 1 positive and 1 negative eigenvalue.

So the signature is σ(L) = 0.

Thus, in genus 1 we see that

τ(XTb) = D−2−1D2exp(2πiq(x− y)) =
1

D
exp(2πiq(x− y)) (6.53)

In genus g if we perform a Dehn twist along bi and tensor with g − 1

copies of the genus 1 id computation then we have m = g + 1 surgery link

components as in figure (6.5). It is easy to verify that the signature remains

σ(L) = 0. Thus the 3-manifold invariant is just

τ(XTbi
) = D−(g+1)−1D2exp(2πiq(xi − yi))

D2(g−1)δx1y1 . . . δxi−1yi−1
δxi+1yi+1

. . . δxgyg (6.54)

which is

τ(XTbi
) = Dg−2exp(2πiq(xi − yi))δx1y1 . . . δxi−1yi−1

δxi+1yi+1
. . . δxgyg (6.55)

Dehn twist along c1

The computation for a Dehn twist along c1 is only slightly more involved.

In this example there is no genus 1 case because two vertical braid sections

interact (see figure (6.6)). Consider the genus 2 case as in figure (6.10). As

usual we can consider the genus g case by tensoring with g − 2 copies of

the genus 1 id computation as in equation (6.24) (the normalization must be
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x1 x2

y1 y2

k1 k2

l

Figure 6.10: Surgery presentation of Dehn twist along c in genus 2. The
surgery is performed on the link components colored by Ck1 , Ck2 , and Cl.

considered separately). The case of a Dehn twist

Tci : Σ→ Σ (6.56)

along an arbitrary ci is similar. We drop the explicit associativity maps.
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Following the diagram up we compute:

v0 7→ (vx1 ⊗ v−x1)⊗ (vx2 ⊗ v−x2) (6.57)

7→ (vx1 ⊗ v−x1)⊗ (vl ⊗ v−l)⊗ (vx2 ⊗ v−x2)

7→ [c−1
l,−x1

][c−l,x2 ]vx1 ⊗ vl ⊗ v−x1 ⊗ vx2 ⊗ v−l ⊗ v−x2

7→ [c−1
l,−x1

][c−1
−x1,l

][c−l,x2 ][cx2,−l]vx1 ⊗ v−x1 ⊗ vl ⊗ v−l ⊗ v−x2 ⊗ v−x2

7→ [c−1
l,−x1

][c−1
−x1,l

][c−l,x2 ][cx2,−l][θl]vx1 ⊗ v−x1 ⊗ vl ⊗ v−l ⊗ v−x2 ⊗ v−x2

7→ [c−1
l,−x1

][c−1
−x1,l

][c−l,x2 ][cx2,−l][θl]vx1 ⊗ v−x1 ⊗ v−x2 ⊗ v−x2

(6.58)

where in the last line the pair Cl ⊗ C−l has been annihilated.

From here the diagram proceeds as two copies of the genus 1 id compu-

tation. Hence (copying the results before equation (6.24)) we obtain that the

ribbon graph invariant F (L ∪ Ω) is

[c−1
l,−x1

][c−1
−x1,l

][c−l,x2 ][cx2,−l][θl]×

[c−1
k1,−x1

][c−1
−x1,k1

][c−y1,k1 ][ck1,−y1 ]×

[c−1
k2,−x2

][c−1
−x2,k2

][c−y2,k2 ][ck2,−y2 ] (6.59)

Writing this out using equation (5.54) this becomes

exp(2πib(l, x1))exp(2πib(−l, x2))exp(2πiq(l))×

exp(2πib(k1, x1))exp(−2πib(y1, k1))×

exp(2πib(k2, x2))exp(−2πib(y2, k2)) (6.60)
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The 3-manifold invariant is calculated using equation (4.77):

τ(XTc) = (p−)σ(L)D−σ(L)−m−1
∑
l,k1,k2

exp(2πib(l, x1))exp(2πib(−l, x2))exp(2πiq(l))×

exp(2πib(k1, x1))exp(−2πib(y1, k1))×

exp(2πib(k2, x2))exp(−2πib(y2, k2)) (6.61)

Performing the sum over k1 and k2 the expression picks up a factor of D2δx1,y1

and D2δx2,y2 according to lemma (6.27). Hence this simplifies:

τ(XTc) = (p−)σ(L)D−σ(L)−m−1
∑
l

exp(2πib(l, x1))exp(2πib(−l, x2))exp(2πiq(l))×

D2δx1,y1D
2δx2,y2 (6.62)

Combine the two factors containing b by bilinearity and symmetry:

τ(XTc) = (p−)σ(L)D−σ(L)−m−1
∑
l

exp(2πib(l, x1 − x2))exp(2πiq(l))×D4δx1,y1δx2,y2 (6.63)

Now rewrite b(l, x1 − x2) = q(l + x1 − x2)− q(l)− q(x1 − x2) to obtain

τ(XTc) = (p−)σ(L)D−σ(L)−m−1
∑
l

exp(2πiq(l + x1 − x2))exp(−2πiq(x1 − x2))×D4δx1,y1δx2,y2 (6.64)
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However we have that
∑
l exp(2πiq(l + x1 − x2)) = p+ hence we finally obtain

(in genus 2)

τ(XTc) = p+(p−)σ(L)D−σ(L)−m−1exp(−2πiq(x1 − x2))×D4δx1,y1δx2,y2 (6.65)

The link L has m = 3 components and the signature of the linking matrix is

σ(L) = 1. Properly normalized the genus 2 invariant is:

τ(XTc) = Dexp(−2πiq(x1 − x2))δx1,y1δx2,y2 (6.66)

We have used the fact that p+p=D2.

In genus g ≥ 2 it is necessary to tensor with g−2 copies of the genus 1 id

computation as in equation (6.24) (however the normalization is not included).

This gives a surgery link L with signature σ(L) = 1 and m = g+1 components.

The 3-manifold invariant corresponding to a Dehn twist along ci (1 ≤ i ≤ g−1)

is then:

τ(XTci
) = p+p−D

−1−(g+1)−1exp(−2πiq(xi− xi+1))×D2gδx1,y1 . . . δxg ,yg (6.67)

which simplies to

τ(XTci
) = Dg−1exp(−2πiq(xi − xi+1))× δx1,y1 . . . δxg ,yg (6.68)

Lickorish generators and Sp(2g,Z)

In the last subsection the Lickorish generators {a1, . . . , ag, b1, . . . , bg, c1, . . . , cg−1}

were studied and their associated projective representations on the Hilbert
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space F (Σ) 3 were produced (the matrix elements τ(XTai
), τ(XTbi

), and

τ(XTci
) were computed explicitly). So we have constructed a map

MCG(Σ)→ PGL(F (Σ)) (6.69)

If Σ is a closed genus g surface then there is a map

Sp : MCG(Σ)→ Sp(2g,Z) (6.70)

determined by recording the action of MCG(Σ) only on homology H1(Σ,Z).

The kernel of this map is the Torelli group, i.e. there is a short exact sequence

1→ Torelli(Σ)→ MCG(Σ)→ Sp(2g,Z) (6.71)

The map MCG(Σ)→ PGL(F (Σ)) factors through Sp(2g,Z) if there is a map

(broken line) that makes the following diagram commute:

MCG(Σ) //

Sp

&&MMMMMMMMMMM
PGL(F (Σ))

Sp(2g,Z)

77
(6.72)

In genus 1 the Torelli group is trivial. The mapping class group is

generated by the s and t matrices:

s =

0 −1

1 0

 t =

1 1

0 1

 (6.73)

3see equation (4.90)
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which satisfy the relations (st)3 = s2 and s4 = 1. The Lickorish generators

{a, b} provide another basis

Sp(Ta) =

1 1

0 1

 = t Sp(Tb) =

 1 0

−1 1

 = s3ts (6.74)

In genus g the Torelli group is not usually trivial. However we can still

analyze the image of the Lickorish generators in Sp(2g,Z). The symplectic

matrices are as follows:

Sp(Tai) =

1g ∆i

0 1g

 where (∆i)αβ =


1 if α = β = i

0 otherwise

(6.75)

Sp(Tbi) =

 1g 0

−∆i 1g

 (6.76)

Sp(Tci) =

1g Γi

0 1g

 where (Γi)αβ =



1 if α = β = i

1 if α = β = i+ 1

−1 if α = i, β = i+ 1 or α = i+ 1, β = i

0 otherwise

(6.77)

These matrices can be written in terms of the symplectic basis given in equa-

tion (3.75). It is clear that Sp(Tai) and Sp(Tci) are already in the symplectic

basis by identifying B = ∆i and B = Γi, respectively. Denoting the symplectic

basis element

sg :=

 0 −1g
1g 0

 (6.78)
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it is easy to check that Sp(Tbi) = s3
gSp(Tai)sg.

6.3 Main theorem

Theorem 6.79. (Main Theorem) The group category C(D,q)(h, s) constructed

from the data (D, q) induces a projective representation of the mapping class

group MCG(Σ) that is isomorphic to the projective representation of MCG(Σ)

constructed from toral Chern-Simons theory

Proof. This is essentially a matter of writing the Lickorish generators (actually

their images in the symplectic group, i.e. equations (6.75), (6.76), (6.77)) in

terms of the symplectic generators in equation (3.75). We can then use this

basis change to compute explicitly what the projective representation (from

toral Chern-Simons) found in equations (3.96), (3.97), and (3.98) are in terms

of the Lickorish generators.

Once we have this we can compare directly with equations (6.45), (6.55),

and (6.68) that were derived from C(D,q)(h, s).

Manifestly equations (6.75) and (6.77) are already in the form of equa-

tion (3.97), and it is straightforward to check that

Sp(Tbi) = s3
gSp(Tai)sg (6.80)

Now, using the toral Chern-Simons projective representation in equa-

tion (3.97) we see that

Ŝp(Tai) = {Ψγ(ω)→ e2πiφ(B)c/24e−2πiΣjB
jjqW (γj)e−2πiΣj<kB

jkb(γj ,γk)Ψγ(ω)}

(6.81)
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where the hat denotes the operator corresponding to Sp(Tai). Using B = ∆i

from above we calculate

Ŝp(Tai) = {Ψγ(ω)→ e2πiφ(B)c/24e−2πiqW (γi)Ψγ(ω)} (6.82)

which agrees (up to a projective scalar) with the C(D,q)(h, s) projective repre-

sentation in equation (6.45) (notice that the delta functions in equation (6.45)

agree with γ 7→ γ here).

The toral Chern-Simons matrix in equation (3.97) also implies

Ŝp(Tci) = {Ψγ(ω)→ e2πiφ(B)c/24e−2πiΣjB
jjqW (γj)e−2πiΣj<kB

jkb(γj ,γk)Ψγ(ω)}

(6.83)

where we use B = Γi from above. This becomes

Ŝp(Tci) = {Ψγ(ω)→ e2πiφ(B)c/24e−2πi[qW (γi)+qW (γi+1)]e−2πi(−1)b(γi,γi+1)Ψγ(ω)}

(6.84)

Using the bilinearity of b this is

Ŝp(Tci) = {Ψγ(ω)→ e2πiφ(B)c/24e−2πi[qW (γi)+qW (γi+1)]e−2πib(γi,−γi+1)Ψγ(ω)}

(6.85)

Using b(γi,−γi+1) = qW (γi− γi+1)− qW (γi)− qW (−γi+1) and the fact that for

a pure quadratic form qW (−γi+1) = qW (γi+1) we have

Ŝp(Tci) = {Ψγ(ω)→ e2πiφ(B)c/24e−2πiqW (γi−γi+1)Ψγ(ω)} (6.86)

which agrees (up to a projective scalar) with the C(D,q)(h, s) projective repre-

sentation in equation (6.68).
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It remains to compute the toral Chern-Simons matrix Ŝp(Tbi) using the

fact that Sp(Tbi) = s3
gSp(Tai)sg and equations (3.97) and (3.98). We have

(Ŝp(Tbi))
γ
γ = (|D|−g/2)4

∑
γ′,γ′′,γ′′′∈Dg

e2πib(γj ,γ
′
j)e2πib(γ′j ,γ

′′
j )e2πib(γ′′j ,γ

′′′
j )×

e2πiφ(B)c/24e−2πiqW (γ′′′i ) × e2πib(γ′′′j ,γj) (6.87)

This is a map from a basis of wavefunctions indexed by γ to a basis in-

dexed by γ. The index j = 1, . . . , g counts the factors of Dg (i.e.
∑
γ′∈Dg =∑

γ′1∈D . . .
∑
γ′g∈D =

∏g
j=1

∑
γ′j∈D). Note that (|D|−g/2)4 = D−4g. Using lemma (6.27)

we can sum over γ′, and then sum over γ′′ to obtain

(Ŝp(Tbi))
γ
γ = D−4gD2ge2πiφ(B)c/24

∑
γ′′′∈Dg

e2πib(−γj ,γ′′′j )×

e−2πiqW (γ′′′i ) × e2πib(γ′′′j ,γj) (6.88)

The factor of D2g = (D2)g appears because the sum over γ′ is shorthand for g

separate sums j = 1, . . . , g. We have

(Ŝp(Tbi))
γ
γ = D−2ge2πiφ(B)c/24

∑
γ′′′∈Dg

e2πib(γj−γj ,γ′′′j ) × e−2πiqW (γ′′′i ) (6.89)
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Likewise the sum over γ′′′ breaks up as separate sums j = 1, . . . , g. We have

(Ŝp(Tbi))
γ
γ = D−2ge2πiφ(B)c/24

 ∑
γ′′′1 ∈D

e2πib(γ1−γ1,γ′′′1 )

×
 ∑
γ′′′2 ∈D

e2πib(γ2−γ2,γ′′′2 )

× . . .×
 ∑
γ′′′i−1∈D

e2πib(γi−1−γi−1,γ
′′′
i−1)

×
 ∑
γ′′′i ∈D

e2πib(γi−γi,γ′′′i ) × e−2πiqW (γ′′′i )


 ∑
γ′′′i+1∈D

e2πib(γi+1−γi+1,γ
′′′
i+1)

× . . .
 ∑
γ′′′g ∈D

e2πib(γg−γg ,γ′′′g )

 (6.90)

By lemma (6.27) each factor j 6= i is just D2δγj ,γj . Hence we obtain

(Ŝp(Tbi))
γ
γ = D−2ge2πiφ(B)c/24

∑
γ′′′i ∈D

e2πib(γi−γi,γ′′′i ) × e−2πiqW (γ′′′i )

D2(g−1)δγ1,γ1δγ2,γ2 . . . δγi−1,γi−1
δγi+1,γi+1

. . . δγg ,γg (6.91)

However −b(γi − γi, γ′′′i ) = −qW (γi − γi + γ′′′i ) + qW (γ′′′i ) + qW (γi − γi) hence

substituting we obtain

(Ŝp(Tbi))
γ
γ = D−2e2πiφ(B)c/24e2πiqW (γi−γi)

∑
γ′′′i ∈D

e−2πiqW (γi−γi+γ′′′i )

δγ1,γ1δγ2,γ2 . . . δγi−1,γi−1
δγi+1,γi+1

. . . δγg ,γg (6.92)
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The last sum is p− so we obtain

(Ŝp(Tbi))
γ
γ = p−D

−2e2πiφ(B)c/24e2πiqW (γi−γi)

δγ1,γ1δγ2,γ2 . . . δγi−1,γi−1
δγi+1,γi+1

. . . δγg ,γg (6.93)

Recall that qW is pure so qW (γi − γi) = qW (γi − γi). Hence we obtain

(Ŝp(Tbi))
γ
γ = p−D

−2e2πiφ(B)c/24e2πiqW (γi−γ)

δγ1,γ1δγ2,γ2 . . . δγi−1,γi−1
δγi+1,γi+1

. . . δγg ,γg (6.94)

which agrees (up to a projective factor) with equation (6.55).

Corollary 6.95. The projective representation of MCG(Σ) induced by C(D,q)(h, s)

factors through the symplectic group, i.e. there is a map CS that makes the

following diagram commute:

MCG(Σ)
C(D,q)(h,s) //

Sp

&&MMMMMMMMMM
PGL(F (Σ))

Sp(2g,Z)

CS
77

(6.96)

Alternatively, the Torelli groups acts trivially,

Proof. This is a part of the proof of theorem (6.79) since the toral Chern-

Simons projective representation of Sp(2g,Z) provides such a map CS.

189



Appendix A

Remark on Nikulin’s Lifting

Theorem

The aim here is to slightly revise the main theorem in [BM05] to correct a

small error in the statement. The theorem should read

Theorem A.1 (Belov and Moore, 2005). Classification of quantum toral

Chern-Simons:

1. The set of ordinary quantum toral Chern-Simons theories is in one-to-

one correspondence with trios of data (D, q, c) where D is a finite abelian

group, q is a pure quadratic form, and c is a cube root of the Gauss

reciprocity formula.

2. The set of spin quantum toral Chern-Simons theories is in one-to-one

correspondence with trios of data (D, q, c) where D is a finite abelian

group, q is a generalized quadratic form, and c is a cube root of the

Gauss reciprocity formula.
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We have replaced “a quadratic form such that q(0) = 0” with “a pure

quadratic form”. Let us show that this cannot be relaxed.

It is obviously true that if a quadratic form q is pure then q(0) = 0.

Hence one may wonder if the “pure” condition in theorem (A.1) (see corol-

lary (3.55) for context) can be weakened to “generalized” along with the extra

condition that q(0) = 0. This is not true. We achieve this by proving a propo-

sition that shows that the conditions in the relevant theorem of Nikulin [Nik80]

are sharp.

Before we begin we require the following result (see the appendix in

[MH73]):

Theorem A.2 (Milgram). Let Λ be an even lattice, i.e. a lattice equipped

with an even symmetric nondegenerate bilinear form B : Λ⊗Λ→ Z. Embed Λ

in the vector space V = Λ⊗Q. Then by bilinearity B extends to a symmetric

nondegenerate bilinear form B : V ⊗ V → Q. Let Q : V → Q be the induced

quadratic refinement defined by Q(v) := 1
2
B(v, v) for v ∈ V . Let sign(B) be the

signature of (Λ, B). Consider the discriminant group D := Λ∗/Λ. B descends

to a bilinear form b : D⊗D → Q/Z and Q descends to a pure quadratic form

q : D → Q/Z. It is a fact that the following Gauss formula is satisfied:

1√
|D|

∑
x∈D

exp (2πiq(x)) = exp(2πi · sign(B)/8) (A.3)

Now for the main result of this appendix:

Proposition A.4.

1. There exists a finite abelian group D equipped with a generalized quadratic

form such that q(0) = 0 but q is not pure.
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2. There exists a finite abelian group D equipped with a generalized quadratic

form such that q(0) = 0 but the data (D, q, C) does not lift to any even

lattice (where C is determined from q using the Gauss sum formula).

Proof. Let us begin by proving the first statement. Consider the example

D = {0, 1/4, 1/2, 3/4} = Z4 equipped with the quadratic form

q(0) = 0 mod 1 (A.5)

q(1/4) =
7

8
mod 1 (A.6)

q(1/2) = 0 mod 1 (A.7)

q(3/4) =
3

8
mod 1 (A.8)

(A.9)

A straightforward verification shows that this is a generalized quadratic form,

i.e. q(x+y)−q(x)−q(y)+q(0) = b(x, y) is bilinear, and the associated bilinear

form on the generator is just

b(1/4, 1/4) =
1

4
(A.10)

It is not pure (i.e. q(nx) 6= n2q(x) for every x ∈ D), but q(0) = 0.

Now to show the second claim. Consider the same group and quadratic

form (D, q). Let us calculate the Gauss sum

1√
|D|

∑
x∈D

exp (2πiq(x)) = exp(2πiC/8) (A.11)

The LHS is easily computed to equal 1. So we conclude that C ≡ 0 mod 8.
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Suppose for a contradiction that (D, q) lifts to an even lattice (Λ, B). By a

lift we mean that there is an even lattice (Λ, B) such that the signature of B

satisfies

sign(B) ≡ C ≡ 0 mod 8 (A.12)

and the bilinear form B descends to the bilinear form b(1/4, 1/4) = 1
4
.

On the other hand it is straightforward to compute all possible pure

quadratic forms on Z4 with bilinear form b(1/4, 1/4) = 1
4

by simply enforcing

the purity condition

q(nx) = n2q(x) (A.13)

There are two pure quadratic refinements of this b. The first is

q1(0) = 0 mod 1 (A.14)

q1(1/4) =
1

8
mod 1 (A.15)

q1(1/2) =
1

2
mod 1 (A.16)

q1(3/4) =
1

8
mod 1 (A.17)

(A.18)
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Computing the Gauss sum implies that C = 1 mod 8. The second is:

q2(0) = 0 mod 1 (A.19)

q2(1/4) =
5

8
mod 1 (A.20)

q2(1/2) =
1

2
mod 1 (A.21)

q2(3/4) =
5

8
mod 1 (A.22)

(A.23)

Computing the Gauss sum implies that C ≡ 5 mod 8.

Now we appeal to theorem (A.2). Consider again the (supposed for

contradiction) lift of the original quadratic form q - this is an even lattice

(Λ, B) with discriminant group D = Z4, induced bilinear form b(1/4, 1/4) = 1
4
,

and the signature is sign(B) ≡ 0 mod 8. Since the lattice is even there is an

induced quadratic refinement Q which descends to a pure quadratic refinement

q. We already calculated all possible pure quadratic refinements for this b (q1

and q2 above). Applying the theorem we see that the signature for the lattice

must be either

sign(B) ≡ C ≡ 1 mod 8 or 5 mod 8 (A.24)

which contradicts the fact that we assumed above that the signature must be

0 mod 8 (A.25)

Hence the original quadratic form q does not lift to an even lattice.
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